已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,x∈R).当x=1时,函数f(x)的极植为-3-c.
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/16 20:15:26
已知函数f(x)=ax3+bx2-c(其中a,b,c均为常数,x∈R).当x=1时,函数f(x)的极植为-3-c.
(1)试确定a,b的值;
(2)求f(x)的单调区间;
(3)若对于任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
(1)试确定a,b的值;
(2)求f(x)的单调区间;
(3)若对于任意x>0,不等式f(x)≥-2c2恒成立,求c的取值范围.
(1)由f(x)=ax3+bx2-c,得f'(x)=3ax2+2bx,
当x=1时,f(x)的极值为-3-c,
∴
f′(1)=0
f(1)=−3−c,得
3a+2b=0
a+b−c=−3−c,∴
a=6
b=−9,
∴f(x)=6x3-9x2-c.
(2)∵f(x)=6x3-9x2-c,∴f′(x)=18x2-18x=18x(x-1),
令f′(x)=0,得x=0或x=1.
当x<0或x>1时,f′(x)>0,f(x)单调递增;当0<x<1时,f′(x)<0,f(x)单调递减;
∴函数f(x)的单调递增区间是(-∞,0)和(1,+∞),单调递减区间是[0,1].
(3)∵f(x)≥-2c2对任意x>0恒成立,∴-6x3-9x2-c≥-2c2对任意x>0恒成立,
∵当x=1时,f(x)min=-3-c,∴-3-c≥-2c2,得2c2-c-3≥0,
∴c≤-1或c≥
3
2.
∴c的取值范围是(−∞,−1]∪[
3
2,+∞).
当x=1时,f(x)的极值为-3-c,
∴
f′(1)=0
f(1)=−3−c,得
3a+2b=0
a+b−c=−3−c,∴
a=6
b=−9,
∴f(x)=6x3-9x2-c.
(2)∵f(x)=6x3-9x2-c,∴f′(x)=18x2-18x=18x(x-1),
令f′(x)=0,得x=0或x=1.
当x<0或x>1时,f′(x)>0,f(x)单调递增;当0<x<1时,f′(x)<0,f(x)单调递减;
∴函数f(x)的单调递增区间是(-∞,0)和(1,+∞),单调递减区间是[0,1].
(3)∵f(x)≥-2c2对任意x>0恒成立,∴-6x3-9x2-c≥-2c2对任意x>0恒成立,
∵当x=1时,f(x)min=-3-c,∴-3-c≥-2c2,得2c2-c-3≥0,
∴c≤-1或c≥
3
2.
∴c的取值范围是(−∞,−1]∪[
3
2,+∞).
已知函数f(x)=ax3+bx2+cx(a、b、c为常数),f(x)在x=-1处有极值,曲线y=f(x)在点(3,-24
已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.
已知函数g(X)=ax3+bx2+cx+d(a不等于0)的导函数为f(x),a+b+c=0,且f(0)f(1)>0,设X
已知函数f(x)=13x3-bx2+c.(b,c为常数),当x=2时,函数f(x)取得极值,若函数f(x)只有三个零点,
10.已知函数f(x)=1/3x的立方-bx的平方+c(b,c为常数),当x=2时,函数f(x)取得极值,若函数f(x)
已知a,b,c,d是不全为0的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d,方程f(x)=0
已知三次函数f(x)=ax3+bx2+cx+d (1)当b=3a,c-d=2a时,证明:函数f
已知f(x)=ax3+bx2+cx+d是定义在R上的函数,其图象与x轴交于A,B,C三点,若点B的坐标为(2,0),且&
已知三次函数f(x)=ax3+bx2+cx(a,b,c∈R)为奇函数,在点(1,f(1))处的切线方程为y=2x-2.
已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(2013•眉山二模)已知函数g(x)=ax3+bx2+cx+d(a≠0)的导函数为f(x),a+b+c=0,且f(0)
f(x)=ax3+bx2+cx+d(a>0)为增函数,则b,c满足的条件是?