设f(x)=ax²+bx+c(a≠),曲线y=f(x)通过点(0,2a+3),且在点(﹣1,f(﹣1))处的切
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 20:40:08
设f(x)=ax²+bx+c(a≠),曲线y=f(x)通过点(0,2a+3),且在点(﹣1,f(﹣1))处的切线垂直于y轴
(1)用a分别表示b和c
(2)当bc取得最小值,求函数g(x)=﹣f(x)e∧(﹣x)的单调区间
(1)用a分别表示b和c
(2)当bc取得最小值,求函数g(x)=﹣f(x)e∧(﹣x)的单调区间
(1)
将(0,2a+3)代入f(x)中得到2a+3=c,即c = 2a+3
f'(x)=2ax+b
f'(-1) = -2a+b = 0,即b = 2a
(2)
由(1)得到bc = (2a+3)2a,当其取到最小值时,a = -3/4,则b = 3/2,c = -3/2
g(x) = -f(x)*e^(-x) = -3/4 * (-x²+2x-2)*e(-x)
因为3/4为常数,可拿掉.
故g(x) = -(-x²+2x-2)*e^(-x)
g'(x) = -(x-2)²*e^(-x)
则g(x)在R上递减.
将(0,2a+3)代入f(x)中得到2a+3=c,即c = 2a+3
f'(x)=2ax+b
f'(-1) = -2a+b = 0,即b = 2a
(2)
由(1)得到bc = (2a+3)2a,当其取到最小值时,a = -3/4,则b = 3/2,c = -3/2
g(x) = -f(x)*e^(-x) = -3/4 * (-x²+2x-2)*e(-x)
因为3/4为常数,可拿掉.
故g(x) = -(-x²+2x-2)*e^(-x)
g'(x) = -(x-2)²*e^(-x)
则g(x)在R上递减.
设函数f(x)=ax方+bx+c(a不等于0),曲线y=f(x)经过点(0,2a+3),且在点(-1,f(-1))处的切
设曲线f(x)=ax^2+bx+c在x=-1处取极值,且于曲线y=3x^2相切于点(1,3),求a+2b+c.
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y
设函数f(x)=1/3x^3-a/2x^2+bx,其中a>0+c,曲线y=f(x)在点P(0,f(0))处的切线方程为y
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为x
设函数f(x)=1/3x^3-a/2x^2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为
设函数f(x)=x^3+ax^2+bx+c,已知它在x=-2时有极值,且过曲线y=f(x)上的点P(1,f(1))的切线
已知函数f(x)=1/3x^3+ax^2+bx,a,b属于R,(1)曲线C:y=f(x)经过点P(1,2),且曲线C在点
设函数f(x)=ax^3+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x-6y-7=0垂直,且在
已知点A(7,0),在曲线C:f(x)=ax^2+bx+c(a>0),且曲线C在点A处的切线与直线x+6y=0垂直,又当
设a>o,f(x)=ax^2+bx+c,曲线y=f(x)在点p(xo,f(x))处切线的倾斜角的取值范围为[0,π/4]
设函数f(x)=ax^2+bx+c((a≠0),满足f(x+1)=f(-x-3),且f(-2)>f(2),解不等式f(-