如图,在菱形ABCD中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 00:57:07
如图,在菱形ABCD中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G
⑴求证:EG*GF=CG*GD
⑵连接DF,如果EF⊥CD,那么∠FDC与∠ADC之间有怎样的数量关系?证明你所得到的结论
⑴求证:EG*GF=CG*GD
⑵连接DF,如果EF⊥CD,那么∠FDC与∠ADC之间有怎样的数量关系?证明你所得到的结论
1)证明:连接ED,(1分)
∵点E在菱形ABCD的对角线AC上,
∴∠ECB=∠ECD,(2分)
∵BC=CD,CE=CE,
∴△BCE≌△DCE;(3分)
∴∠EDC=∠EBC,(4分)
∵EB=EF,
∴∠EBC=∠EFC;(5分)
∴∠EDC=∠EFC;(6分)
∵∠DGE=∠FGC,
∴△DGE∽△FGC;(7分)
∴EGCG=GDFG,∴EG•GF=CG•GD;(8分)
∠ADC=2∠FDC.(9分)
证明如下:∵EGCG=GDFG,∠DGF=∠EGC,
∴△DGE∽△FGC;(10分)
∵EF⊥CD,DA=DC,
∴∠DAC=∠DCA=∠DFG=90°-∠FDC,(11分)
∴∠ADC=180°-2∠DAC=180°-2(90°-∠FDC)=2∠FDC.(12分)
∵点E在菱形ABCD的对角线AC上,
∴∠ECB=∠ECD,(2分)
∵BC=CD,CE=CE,
∴△BCE≌△DCE;(3分)
∴∠EDC=∠EBC,(4分)
∵EB=EF,
∴∠EBC=∠EFC;(5分)
∴∠EDC=∠EFC;(6分)
∵∠DGE=∠FGC,
∴△DGE∽△FGC;(7分)
∴EGCG=GDFG,∴EG•GF=CG•GD;(8分)
∠ADC=2∠FDC.(9分)
证明如下:∵EGCG=GDFG,∠DGF=∠EGC,
∴△DGE∽△FGC;(10分)
∵EF⊥CD,DA=DC,
∴∠DAC=∠DCA=∠DFG=90°-∠FDC,(11分)
∴∠ADC=180°-2∠DAC=180°-2(90°-∠FDC)=2∠FDC.(12分)
已知如图在菱形abcd中,点E在对角线AC上,点F在BC的延长线上,EF=EB,EF与CD相交于点G
已知如图 在菱形ABCD中,点E在对角线AC上,点F在BF的延长线上,EF=EB,EF与CD相交于G
如图,点e为平行四边形abcd对角线ac上一点,点f在be的延长线上且ef=be,ef与cd相交于点g求:df平行于ac
如图,E畏平行四边形abcd对角线AC上的点,F在BE的延长线上,EF=BE,EF与CD相交于G.求证:DF//AC
已知四边形ABCD是正方形(如图1),点E在对角线AC上,点F在射线BC上,且EF=EB,EF与CD相交于点G,(1)当
如图,正方形ABCD中,点E在对角线AD上,点G在BC的延长线上,DF⊥DE,DF交∠DCG的平分线于F,EF交CD于H
如图,在菱形ABCD中E、F分别是BC、AC上的点,G是AB延长线上的一点,且EF‖CD,∠BEG=∠CDF,求证:DF
已知如图,在菱形ABCD中,CO⊥BD,垂足为点O,E为BC上一点,F为AD延长线上一点,EF交CD于点G,EG=FG=
已知:如图,在四边形ABCD中,点E在AB上;过点E作EF//BC与对角线AC相交于点F;过点F作FG//CD,与上底A
如图在矩形ABCD中,点P为对角线AC上任意一点过点P线段EF,GH分别与AB,CD,AD,BC相交于点E,F,G,H.
已知:如图,点E在正方形ABCD的对角线BD上,且BE=AB,EF⊥BD,EF与CD相交于点F.
如图:在菱形ABCD中,E是AB的中点,做EF‖BC,交AC于点F,如果EF=4.求CD的长.