设数{an}前n项和Sn满足:S3=32,且Sn=13an+c(c为常数,n∈N*).
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 20:00:08
设数{a
(1)n=1时,a1=
1
3a1+c,∴a1=
3
2c,
n≥2时,Sn=
1
3an+c,Sn−1=
1
3an−1+c,两式相减化简得an=−
1
2an−1,由S3=
3
2得c=
4
3,
∴a1=2,∴数列{an}是等比数列,an=2×(−
1
2)n−1
(2)∵bn+1>bn,∴λan+1+(n+1)2+n+1>λan+n2+n,∴
3
2λan<2n+2,∴
3
2λ•(−
1
2)n−1<2n+2①当n为奇数时,λ<
1
3(2n+2)•2n−1∵
1
3(2n+2)•2n−1随n的增大而增大,∴当n=1时,
1
3(2n+2)•2n−1取得最小值为
4
3,则要使对一切n∈N*恒成立,则λ<
4
3;
②当n为偶数时,λ>−
1
3(2n+2)•2n−1∵
1
3(2n+2)•2n−1随n的增大而减少,∴当n=2
时,
1
3(2n+2)•2n−1取得最大值为−4,则要使对一切n∈N*恒成立,则λ>-4
综上知,−4<λ<
4
3.
1
3a1+c,∴a1=
3
2c,
n≥2时,Sn=
1
3an+c,Sn−1=
1
3an−1+c,两式相减化简得an=−
1
2an−1,由S3=
3
2得c=
4
3,
∴a1=2,∴数列{an}是等比数列,an=2×(−
1
2)n−1
(2)∵bn+1>bn,∴λan+1+(n+1)2+n+1>λan+n2+n,∴
3
2λan<2n+2,∴
3
2λ•(−
1
2)n−1<2n+2①当n为奇数时,λ<
1
3(2n+2)•2n−1∵
1
3(2n+2)•2n−1随n的增大而增大,∴当n=1时,
1
3(2n+2)•2n−1取得最小值为
4
3,则要使对一切n∈N*恒成立,则λ<
4
3;
②当n为偶数时,λ>−
1
3(2n+2)•2n−1∵
1
3(2n+2)•2n−1随n的增大而减少,∴当n=2
时,
1
3(2n+2)•2n−1取得最大值为−4,则要使对一切n∈N*恒成立,则λ>-4
综上知,−4<λ<
4
3.
设数列{an}的前n项和为Sn,且满足an=2-Sn(n∈N*).
设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.
已知数列{an}的前n项和为Sn,Sn=13(an−1)(n∈N*).
数列{an}的前n项和为Sn,且Sn=13(an−1)
设数列an的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n,且a1,a2,a3成等差数列
已知数列{an}的前n项和为Sn,且Sn=23an+1(n∈N*);
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^n+1+1,且a1,a2+5.a3成等差数
设等差数列{an}的前n项和为Sn,且a5+a13=34,S3=9.
设等差数列{an}的前n项和为Sn,且S3=2S2+4,a5=36.
设数列{an}的前n项和为Sn,已知S1=1,Sn+1/Sn=n+c/n(c为常数,c不等于1,n属于正整数)
等差数列前n项和为Sn且a3a4=117,a2+a5=22,求通项an 若等差数列bn=Sn/(n+c),求非零常数c
设数列{an}的前n项和为Sn,且2an=Sn+2n+1(n∈N*).