作业帮 > 综合 > 作业

(2012•黄浦区二模)如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(

来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 10:05:59
(2012•黄浦区二模)如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.
(2012•黄浦区二模)如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(
(1)∵MN∥AO,
∴△BMN∽△BOA,

MB
BO=
BN
AB,
∵∠C=90°,AC=BC,AB=6,
∴由勾股定理得:BC=3
2,
∵O是BC边上的中点,
∴BO=
3
2
2,
∵AN=x,BM=y,

y

3
2
2=
6−x
6,
∴y=

2(6−x)
4(0<x<6);

(2)
∵以DN为半径的⊙D和以MG为半径的⊙M外切,
∴DN+MG=DM,又DN+MN=DM,
∴MG=MN,
∴∠MNG=∠G,
又∵∠MNG=∠AND,
∴∠AND=∠G,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAN=∠MBG,
又∵AN=BG,
∴△AND≌△BGM,
∴DN=MG=MN,
∵∠ACB=90°,
∴CN=DN,
∴∠ACN=∠D,
∵∠ACB=90°,AC=BC,O是BC边上的中点,
∴tan∠CAO=
CO
AC=
1
2,
∵MN∥AO,
∴∠CAO=∠D,
∴∠CAO=∠ACN,
∴tan∠ACN=
1
2;

(3)∵∠DAN=∠MBG,当△ADN与△MBG相似时,分为两种情况:
①若∠D=∠BMG时,过点G作GE⊥CB,垂足为点E,
tan∠BMG=
GE
ME=
1
2,
∵∠ACB=90°,GE⊥BC,
∴AC∥GE,
∴∠BGE=∠CAB=45°,
∵∠ABC=∠GBE=45°,
∴∠ABC=∠GBE=∠BGE=45°,
∴BE=EG,
∴BM=BE,
∴由勾股定理得:y=