(2012•黄浦区二模)如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 10:05:59
(2012•黄浦区二模)如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.
(1)∵MN∥AO,
∴△BMN∽△BOA,
∴
MB
BO=
BN
AB,
∵∠C=90°,AC=BC,AB=6,
∴由勾股定理得:BC=3
2,
∵O是BC边上的中点,
∴BO=
3
2
2,
∵AN=x,BM=y,
∴
y
3
2
2=
6−x
6,
∴y=
2(6−x)
4(0<x<6);
(2)
∵以DN为半径的⊙D和以MG为半径的⊙M外切,
∴DN+MG=DM,又DN+MN=DM,
∴MG=MN,
∴∠MNG=∠G,
又∵∠MNG=∠AND,
∴∠AND=∠G,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAN=∠MBG,
又∵AN=BG,
∴△AND≌△BGM,
∴DN=MG=MN,
∵∠ACB=90°,
∴CN=DN,
∴∠ACN=∠D,
∵∠ACB=90°,AC=BC,O是BC边上的中点,
∴tan∠CAO=
CO
AC=
1
2,
∵MN∥AO,
∴∠CAO=∠D,
∴∠CAO=∠ACN,
∴tan∠ACN=
1
2;
(3)∵∠DAN=∠MBG,当△ADN与△MBG相似时,分为两种情况:
①若∠D=∠BMG时,过点G作GE⊥CB,垂足为点E,
tan∠BMG=
GE
ME=
1
2,
∵∠ACB=90°,GE⊥BC,
∴AC∥GE,
∴∠BGE=∠CAB=45°,
∵∠ABC=∠GBE=45°,
∴∠ABC=∠GBE=∠BGE=45°,
∴BE=EG,
∴BM=BE,
∴由勾股定理得:y=
∴△BMN∽△BOA,
∴
MB
BO=
BN
AB,
∵∠C=90°,AC=BC,AB=6,
∴由勾股定理得:BC=3
2,
∵O是BC边上的中点,
∴BO=
3
2
2,
∵AN=x,BM=y,
∴
y
3
2
2=
6−x
6,
∴y=
2(6−x)
4(0<x<6);
(2)
∵以DN为半径的⊙D和以MG为半径的⊙M外切,
∴DN+MG=DM,又DN+MN=DM,
∴MG=MN,
∴∠MNG=∠G,
又∵∠MNG=∠AND,
∴∠AND=∠G,
∵AC=BC,
∴∠CAB=∠CBA,
∴∠DAN=∠MBG,
又∵AN=BG,
∴△AND≌△BGM,
∴DN=MG=MN,
∵∠ACB=90°,
∴CN=DN,
∴∠ACN=∠D,
∵∠ACB=90°,AC=BC,O是BC边上的中点,
∴tan∠CAO=
CO
AC=
1
2,
∵MN∥AO,
∴∠CAO=∠D,
∴∠CAO=∠ACN,
∴tan∠ACN=
1
2;
(3)∵∠DAN=∠MBG,当△ADN与△MBG相似时,分为两种情况:
①若∠D=∠BMG时,过点G作GE⊥CB,垂足为点E,
tan∠BMG=
GE
ME=
1
2,
∵∠ACB=90°,GE⊥BC,
∴AC∥GE,
∴∠BGE=∠CAB=45°,
∵∠ABC=∠GBE=45°,
∴∠ABC=∠GBE=∠BGE=45°,
∴BE=EG,
∴BM=BE,
∴由勾股定理得:y=
(2012•虹口区二模)如图,△ABC中,∠ABC=90°,AB=BC=4,点O为AB边的中点,点M是BC边上一动点(不
如图RT△ABC中,∠C=90°,AC=BC,AB=4倍根号2,点F是AB边的中点,点D,E分别在AC,BC边上,且AD
如图,在RT△ABC中,∠C=90°,AC=BC,AB=4倍根号2,点F是AB边的中点,点D,E分别在AC,BC边上,且
已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
如图,在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB边上的中点,点D,E分别在AC,BC边上,且保持AD=
如图,在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持A
如图:在等腰Rt△ABC中,∠C=90度,AC=8,F是AB边上的中点,点D、E分别在AC,BC边上运动,且保持AD=C
如图,在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,E是在AC边上的一个动点(与点A、C不重合),DF⊥
已知,如图,△ABC中,∠A=90°,AB=AC,D是BC边上的中点,E、F分别是AB、AC上的点,且BE=AF,求证:
(2013•温州二模)如图,在△ABC中,AD是它的角平分线,∠C=90°,E在AB边上,以AE为直径的⊙O交BC于点D
已知:在三角形ABC中,AC=BC,∠ABC=90度,点D是AB的中点,点E是AB边上的一点.
在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.如图1所