作业帮 > 数学 > 作业

如图,抛物线y=ax2-x-3/2与x轴正半轴交于点A

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:33:16
如图,抛物线y=ax2-x-3/2与x轴正半轴交于点A
抛物线y=ax²-x-3/2与x轴正半轴交于点A(3,0)以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
1.求a的值
2.求点F得坐标
如图,抛物线y=ax2-x-3/2与x轴正半轴交于点A
(1)将A(3,0)带入方程y=ax²-x-3/2求出a=1/2.
(2)OA长为3,所以正方形OABC边长为3,即C(0,3),D(x,3)
将D(x,3)带入y=(1/2)x²-x-3/2中解得:x=1±√10
因为D点在第一象限,所以D(1+√10,3)
又因为再以BD为边向上作正方形BDEF.
所以点F在B点的正上方,即F(3,y)
因为|BD|=1+√10-3=-2+√10,BDEF是正方形
所以|BF|=-2+√10,|AF|=|AB|+|BF|=3+(-2+√10)=1+√10
所以F(3,1+√10)