(2011•怀柔区一模)已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和a
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/16 23:03:47
(2011•怀柔区一模)已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的个数.
(Ⅰ)设集合P={2,4,6,8},Q={2,4,8,16},分别求l(P)和l(Q);
(Ⅱ)对于集合A={a1,a2,a3,…,an},猜测ai+aj(1≤i<j≤n)的值最多有多少个;
(Ⅲ)若集合A={2,4,8,…,2n},试求l(A).
(Ⅰ)设集合P={2,4,6,8},Q={2,4,8,16},分别求l(P)和l(Q);
(Ⅱ)对于集合A={a1,a2,a3,…,an},猜测ai+aj(1≤i<j≤n)的值最多有多少个;
(Ⅲ)若集合A={2,4,8,…,2n},试求l(A).
(Ⅰ)因为集合P={2,4,6,8},
所以2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,
所以可得:l(P)=5.
因为集合Q={2,4,8,16},
所以2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,
所以可得:l(Q)=6.
(Ⅱ)对于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有
n(n−1)
2个.
因为在集合A的n个元素中任取一个元素,共有n种,再从余下的n-1个元素中任取一个元素,
共有n-1种.把取出的元素两两作和共有n(n-1)个,
因为aj+ai=ai+aj等情况,
所以对于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有
n(n−1)
2个.
(Ⅲ) 因为集合A={a1,a2,a3,…,an}最多有
n(n−1)
2个ai+aj(1≤i<j≤n)的值,
所以l(A)≤
n(n−1)
2.
又集合A={2,4,8,…,2n},任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n),
当j≠l时,不妨设j<l,则ai+aj<2aj=2j+1≤al<ak+al,即ai+aj≠ak+al.
当j=l,i≠k时,ai+aj≠ak+al.
因此,当且仅当i=k,j=l时,ai+aj=ak+al.
即所有ai+aj(1≤i<j≤n)的值两两不同,
所以l(A)=
n(n−1)
2.
所以2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,
所以可得:l(P)=5.
因为集合Q={2,4,8,16},
所以2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,
所以可得:l(Q)=6.
(Ⅱ)对于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有
n(n−1)
2个.
因为在集合A的n个元素中任取一个元素,共有n种,再从余下的n-1个元素中任取一个元素,
共有n-1种.把取出的元素两两作和共有n(n-1)个,
因为aj+ai=ai+aj等情况,
所以对于集合A={a1,a2,a3,…,an},ai+aj(1≤i<j≤n)的值最多有
n(n−1)
2个.
(Ⅲ) 因为集合A={a1,a2,a3,…,an}最多有
n(n−1)
2个ai+aj(1≤i<j≤n)的值,
所以l(A)≤
n(n−1)
2.
又集合A={2,4,8,…,2n},任取ai+aj,ak+al(1≤i<j≤n,1≤k<l≤n),
当j≠l时,不妨设j<l,则ai+aj<2aj=2j+1≤al<ak+al,即ai+aj≠ak+al.
当j=l,i≠k时,ai+aj≠ak+al.
因此,当且仅当i=k,j=l时,ai+aj=ak+al.
即所有ai+aj(1≤i<j≤n)的值两两不同,
所以l(A)=
n(n−1)
2.
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
已知数集A={a1,a2,…,an}(1≤a1<a2<…an,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),ai
已知数列{an}满足a1=1,an=a1 +1/2a2 +1/3a3 … +1/(n-1)a(n-1),(n>1,n∈N
已知A={a1,a2,a3,a4,a5},B={a1^2,a2^2,a3^2,a4^2,a5^2},ai属于N*,i=1
已知a1,a2,a3…an∈R+,且a1a2a3…an=1,求证(1+a1)(1+a2)…(1+an)≥2^n
打靶3次,事件Ai表示“击中i次”,其中i=0,1,2,3.那么A=A1∪A2∪A3表示的是( )
(2014•呼和浩特一模)数列{an},已知对任意正整数n,a1+a2+a3+…+an=2n-1,则a12+a22+a3
给定数列an={a1,a2,a3.an},bn=a(n+1)-an
已知数列{an}满足:a1=1,且an-a(n-1)=2n.求a2,a3,a4.求数列{an}通项an
已知:A1=2,a(n+1)=(1+An)/(1-An) {nEN*},求A1*A2*A3*……*A2010
已知集合A={a1,a2,a3,a4},集合B={b1,b2},其中ai,bj(i=1,2,3,4; j=1,2)均为实
已知数列An是等比数列,A2=2,A5=16,则A1*A2+A2*A3+.+An*A(n+1)=?