刘老师 若R(a1,a2,a3)=2,R(a2,a3,a4)=3则为什么a1,a2,a3,a4线性相关?
已知R(A1,A2,A3)=2,R(A2,A3,A4)=3 证明:A1能由A2,A3线性表示;A4不能由A1,A2,A3
已知R(a1,a2,a3)=3,R(a1,a2,a3,a4)=3,R(a2,a3,a4)=2.
一个线代题,若r(a1 a2 a3 a4)=(a2 a3 a4)=3则r(a1 a2 a4)=()
a1a2a3a4为n元向量且r(a1,a2,a3)=2r(a2,a3,a4)=3证明 a1能由[a2,a3]线性表出 a
设矩阵A=(a1,a2,a3,a4)其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,求
已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4,R(A)=2,R(B)=3,证明a1
已知R(a1,a2,a3)=2,R(a2,a3,a4)=3,证明 (1)a1能由a2,a3线性表示 (2)a4不能由a1
设矩阵A=[a1.a2.a3.a4],其中a2.a3.a4线性无关,a1=2a3-3a4.向量b=a1+2a2+3a3+
向量组(1)a1,a2,a3(2)a1,a2,a3,a4(3)a1,a2,a3,a5 R(1)=R(2)=3,R(3)=
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2-a3,向量b=a1+a2+a3+a4,
线代证明题若向量a1,a2,a3,a4线性无关,则证向量组a1+a2,a2+a3,a3+a4,a4+a1线性相关.
设a1,a2,a3,a4线性无关,求证a1+a2,a2+a3,a3+a4,a4+a1线性相关