已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2^(x+2)-4的图像上,1 求其通项
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 21:41:30
已知数列{an}的前n项和为Sn,对一切正整数,点(n,Sn)都在函数f(x)=2^(x+2)-4的图像上,1 求其通项公式 2 设bn=an×log2an 求bn的前n项和Tn.
1、
根据题意,得
Sn=2^(n+2)-4=4(2^n-1)
a1=S1=4(2^1-1)=4
an=Sn-Sn-1=4(2^n-1)-4[2^(n-1)]=4[2^n-2^(n-1)]=2(2*2^n-2^n)=2^(n+1)
n=1时,同样成立.
{an}的通项公式为an=2^(n+1)
2.
bn=anlog2(an)
=2^(n+1)log2[2^(n+1)]
=(n+1)2^(n+1)
Tn=b1+b2+...+bn=2*2^2+3*2^3+...+n2^n+(n+1)2^(n+1)
Tn/2=2*2+3*2^2+4*2^3+...+(n+1)2^n
Tn/2-Tn=2*2+2^2+2^3+...+2^n-(n+1)2^(n+1)
=2+2+2^2+2^3+...+2^n-(n+1)2^(n+1)
=2+2(2^n-1)/(2-1)-(n+1)2^(n+1)
=2+2^(n+1)-2-n2^(n+1)-2^(n+1)
=-n2^(n+1)
Tn/2=n2^(n+1)
Tn=n*2^(n+2)
根据题意,得
Sn=2^(n+2)-4=4(2^n-1)
a1=S1=4(2^1-1)=4
an=Sn-Sn-1=4(2^n-1)-4[2^(n-1)]=4[2^n-2^(n-1)]=2(2*2^n-2^n)=2^(n+1)
n=1时,同样成立.
{an}的通项公式为an=2^(n+1)
2.
bn=anlog2(an)
=2^(n+1)log2[2^(n+1)]
=(n+1)2^(n+1)
Tn=b1+b2+...+bn=2*2^2+3*2^3+...+n2^n+(n+1)2^(n+1)
Tn/2=2*2+3*2^2+4*2^3+...+(n+1)2^n
Tn/2-Tn=2*2+2^2+2^3+...+2^n-(n+1)2^(n+1)
=2+2+2^2+2^3+...+2^n-(n+1)2^(n+1)
=2+2(2^n-1)/(2-1)-(n+1)2^(n+1)
=2+2^(n+1)-2-n2^(n+1)-2^(n+1)
=-n2^(n+1)
Tn/2=n2^(n+1)
Tn=n*2^(n+2)
已知数列{an}的前n项和为Sn,且对一切正整数n,点(n,Sn)都在函数f(x)=2^x+2 -4的图像上.
数学题..急急已知数列{an}的前n项和为Sn.对一切正整数n,点(Sn,n)都在函数f(x)㏒2(
已知函数f(x)=x2+2x,数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上,
设数列{an}的前n项和为Sn,对一切n∈N*,点(n,Sn/n)都在函数f(x)=x+an/2x的图像上
已知数列{an}的前n项和为sn,对任意的n属于正整数,点(n,sn)均在函数f(x)=2^x的图像上,求数列an的通项
已知数列{an}的前n几项和为Sn,点(n,Sn)在函数f(x)=2^x-1图像上,数列{bn}
已知数列{an}的前n项和为Sn,对任何正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n
已知数列{an}的前n项为Sn,点(n,Sn)在函数f(x)=2^x-1的图像上,数列{bn}满足
设数列{an}的前n项和为Sn,对一切n∈N+,点(n,Sn/n)均在函数f(x)=3x+2的图像上
已知等差数列an的前n项和为sn,点(n,sn)(n∈n*)在函数f(x)=2^x-1图像上,则数列﹛1/an﹜前n项和
已知数列AN的前N项和SN,对任意N∈N*,点(n,sn)都在函数f(x)=2x²-x的图像上
考试着呢 已知数列{an}的前n项和为sn,对一切正整数n ,点pn(n,sn)都在函数