作业帮 > 数学 > 作业

如图所示,在梯形ABCD中,AB‖DC,AD=BC,AC与BD交于点O,求证:OA=OB,OD=OC

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 16:51:28
如图所示,在梯形ABCD中,AB‖DC,AD=BC,AC与BD交于点O,求证:OA=OB,OD=OC
如图所示,在梯形ABCD中,AB‖DC,AD=BC,AC与BD交于点O,求证:OA=OB,OD=OC
这个很好做的证三角形DOA和三角形COB全等就可以=w=
∵DA=CB,AB=AB,角DAB=角CBA(等腰梯形同一底上两底角相等)
∴△DAB全等于△CAB(SAS)
∴角CAB=角DBA
又∵角DAB=角CBA,∴角DAB-角CAB=角CBA-角DBA
即:角DAO=角CBO
又∵角DOA=角COB,DA=CB
∴△DOA全等于△COB(AAS)
∴DO=OC,OA=OB