(1)如图1,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/06 21:32:27
(1)如图1,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;
(2)如图2,已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.
(2)如图2,已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.
(1)证明:连接OE,如图1,
∵BE是∠CBA的角平分线,
∴∠ABE=∠CBE.
∵OE=OB,
∴∠ABE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC
∴∠OEC=∠C=90°,
∴OE⊥AC,
∴AC是⊙O的切线,;
(2)证明:如图2,
∵AB=AC,AD是BC的边上的中线,
∴AD⊥BC,
∴∠ADB=90°.
∵四边形ADBE是平行四边形,
∴平行四边形ADBE是矩形.
∵BE是∠CBA的角平分线,
∴∠ABE=∠CBE.
∵OE=OB,
∴∠ABE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC
∴∠OEC=∠C=90°,
∴OE⊥AC,
∴AC是⊙O的切线,;
(2)证明:如图2,
∵AB=AC,AD是BC的边上的中线,
∴AD⊥BC,
∴∠ADB=90°.
∵四边形ADBE是平行四边形,
∴平行四边形ADBE是矩形.
如图在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.
(2013•温州二模)如图,在△ABC中,AD是它的角平分线,∠C=90°,E在AB边上,以AE为直径的⊙O交BC于点D
如图,在△ABC中,c=90度,AD是∠BAC的角平分线,O是AB上一点,以OA为半径的⊙O经过点D,交AC于点E&nb
如图,在△ABC中,c=90度,AD是∠BAC的角平分线,O是AB上一点,以OA为半径的⊙O经过点D,交AC于点E
如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为 2 3 .
(2006•韶关)如图,在△ABC中,∠C=60°,以AB为直径的半圆O分别交AC,BC于点D,E,已知⊙O的半径为23
如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点E,交BC于点D.求证 (1)点D是BC中点 (2)△BEC
(2013•龙岗区模拟)如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E
如图,在Rt△ABC中,∠C=90°,以BC为直径作半圆交AB于D,过D作半圆的切线交AC于E,若AD=2,DB=4,则
如图,已知在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,以AD为直径的⊙O经过点E,且交AC于
如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,点D在AB上,以BD为直径的半圆O切AC于点E,则图中阴影
如图,在△ABC中,AB=AC,以AC为直径的半圆O分别交AB、BC于点D、E.