作业帮 > 数学 > 作业

椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点,为F1(-c,0),F2(c,0),M是椭圆上一点,满足向量F1

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 21:23:17
椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点,为F1(-c,0),F2(c,0),M是椭圆上一点,满足向量F1M*向量F2M=0
(1)求离心率e的取值范围.(2)当离心率e取得最小值时,点N(0,3)到椭圆的点的最远距离为5根号2,求此时椭圆方程.
椭圆x2/a2+y2/b2=1(a>b>0)的两个焦点,为F1(-c,0),F2(c,0),M是椭圆上一点,满足向量F1
答案为:√2/2 =