为什么泰勒公式要写成n阶导数为系数的和的形式?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 21:14:36
为什么泰勒公式要写成n阶导数为系数的和的形式?
其实这个问题也可以理解为泰勒公式的证明,就是泰勒是怎么想到这个公式的.
下面是证明过程:
f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式.设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An.显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!.至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2+……+f(n)(x.)/n!(x-x.)^n.接下来就要求误差的具体表达式了.设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0.所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0.根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间.但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x).综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1).一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn.
下面是证明过程:
f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式:P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式.设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An.显然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!.至此,多项的各项系数都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!(x-x.)^2+……+f(n)(x.)/n!(x-x.)^n.接下来就要求误差的具体表达式了.设Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0.所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0.根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间.但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x).综上可得,余项Rn(x)=f(n+1)(ξ)/(n+1)!(x-x.)^(n+1).一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn.
为什么泰勒公式要写成n阶导数为系数的和的形式?
泰勒公式怎么求N阶导数
求arctanx的n阶导数,不用泰勒公式的做法
求ln(1+x^2)的n阶导数,怎么用泰勒公式做呢?
高数泰勒公式的疑问!带皮亚诺余项的泰勒公式,有n阶导数,但我只求三阶泰勒公式,f(x)能等于这个带皮亚诺余项的三阶泰勒公
关于泰勒公式的解释,我都迷糊了,越想越乱.为什么要用f(x)的值以及各阶导数的值等于n次多项式的值及各阶导数的值来确定系
由泰勒公式的系数求函数在指定点处高阶导数的值
泰勒公式 泰勒中值定理:若函数f(x.)在含有x的开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为
泰勒公式中的多项式泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一
求f(x)=x^2sinx在x=0处的n阶导数,用泰勒公式
用泰勒公式求高阶导数设y=arcsinx,(n)求 y (0);(当x=0时,y的n阶导数)
泰勒公式 在泰勒公式证明过程中,Rn(x.)=f(x.)-P(x.)=0是怎么得出来的,为什么Rn(x)的高阶导数要等于