用数学归纳法证明x^2n-1+y^2n-1能被x+y整除
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/17 14:57:16
用数学归纳法证明x^2n-1+y^2n-1能被x+y整除
明天考试,
明天考试,
当n=1时
x^(2n-1)+y^(2n-1)
=x+y
(x+y)/(x+y)=1
能被x+y整除.
假设当n=k(k为整数,且k>=2)时,x^(2k-1)+y^(2k-1)能被x+y整除,
则当n=k=1时
令x^(2k-1)+y^(2k-1)=A(x+y)
则x^(2k-1)=A(x+y)-y^(2k-1)
x^[2(k+1)-1]+y^[2(k+1)-1]
=x^(2k-1+2)+y^(2k-1+2)
=x^2*x^(2k-1)+y^2*y^(2k-1)
=x^2*[A(x+y)-y^(2k-1)]+y^2*y^(2k-1)
=x^2*A(x+y)-x^2y^(2k-1)+y^2*y^(2k-1)
=x^2*A(x+y)+(y^2-x^2)*y^(2k-1)
=x^2*A(x+y)+(x+y)(y-x)*y^(2k-1)
两项中均含x+y
[x^2*A(x+y)+(x+y)(y-x)*y^(2k-1)]/(x+y)
=Ax^2+(y-x)*y^(2k-1)为整数
能被x+y整除.
综上,x^(2n-1)+y^(2n-1)能被x+y整除
x^(2n-1)+y^(2n-1)
=x+y
(x+y)/(x+y)=1
能被x+y整除.
假设当n=k(k为整数,且k>=2)时,x^(2k-1)+y^(2k-1)能被x+y整除,
则当n=k=1时
令x^(2k-1)+y^(2k-1)=A(x+y)
则x^(2k-1)=A(x+y)-y^(2k-1)
x^[2(k+1)-1]+y^[2(k+1)-1]
=x^(2k-1+2)+y^(2k-1+2)
=x^2*x^(2k-1)+y^2*y^(2k-1)
=x^2*[A(x+y)-y^(2k-1)]+y^2*y^(2k-1)
=x^2*A(x+y)-x^2y^(2k-1)+y^2*y^(2k-1)
=x^2*A(x+y)+(y^2-x^2)*y^(2k-1)
=x^2*A(x+y)+(x+y)(y-x)*y^(2k-1)
两项中均含x+y
[x^2*A(x+y)+(x+y)(y-x)*y^(2k-1)]/(x+y)
=Ax^2+(y-x)*y^(2k-1)为整数
能被x+y整除.
综上,x^(2n-1)+y^(2n-1)能被x+y整除
用数学归纳法证明证明x^2n-y^2n能被x+y整除
数学归纳法证明 x^(2n-1)+y^(2n-1) 能被X+Y整除 n3+5n能被6整除
用数学归纳法证明:X的2n次方—y的2n次方能被X+Y整除(
用数学归纳法证明,x的2n-1次方 加上 y的2n-1次方能被x+y整除.
用数学归纳法证明:x^2n-1能被x+1整除
用数学归纳法证明(x+3)n次方-1能被(x+2)整除
用数学归纳法证明,当n为正奇数时,x^n+y^n能被x+y整除
用数学归纳法证明命题:当n为正奇数,x∧n +y∧n能被 x+y 整除 ,其第二步为(假设当n=2k-1(k∈N新)时命
对任何自然数,x^n-nx+(n-1)能被(x-1)^2整除,用数学归纳法证明这个命题
当n.>=0时,多项式x^(n+2)+(〖x+1)〗^(2n+1)能被x^2+x+1整除.请用数学归纳法证明
用数学归纳法证明:当整数n≥0时,(x+2)^(2n+2)-(x+1)^(n+1)能被x^2+3x+3整除?
用数学归纳法证明:(1)n(n+1)(2n+1)能被6整除