设A,P是3阶矩阵,P^T为P的转置矩阵,且P^TAP=(100,010,002),若P=(a1,a2,a3),Q=(a
设A,P均为3阶矩阵,且PTAP=diag(1,1,2),若P=[a1 a2 a3],Q=[a1+a2 a2 a3],其
一道线性代数的问题设A=E+aaT(aT为a的转置),其中a=(a1,a2,a3)T,且aaT=2,求一个可你矩阵P,使
设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵
高数二次型难题!1 2 1对矩阵A = 2 1 1,求一可逆矩阵P,使P^TAP是对角矩阵形式.(P^T表示P转置矩阵)
已知矩阵P的逆阵*A*P=对角矩阵(6 2 2)a1是矩阵A属于特征值6的特征向量,a2和a3是矩阵A属于特征值2的线性
设矩阵A是 3 -2 -4 求正交矩阵P 使得P的转置乘以A再乘以P=对角矩阵.
已知三阶矩阵A的特征值为1,2,3 对应的特征向量分别为a1,a2,a3,令P=(3a3,2a2,a1),则P^(-1)
设A1,A2,A3是三个相互独立的随机事件,且P(A1)=P(A2)=P(A3)=P(0
设向量α=(a1,a2,a3……an)ai≠0证明:若A=α^tα则存在常数m,使得A^k=mA求可逆矩阵P 使P^-1
设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-
概率:设随机事件A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.7求:(1)A1,A
概率论 A1A2A3属于A,证明P(A)>=P(A1)+P(A2)+P(A3)