如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面的中心,且A1在底面ABCD上的射
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/19 06:32:23
如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面的中心,且A1在底面ABCD上的射影是O.
(1)求证:面O1DC⊥面ABCD;
(2)若∠A1AB=60°,求二面角C-AA1-B大小;
(3)若点E,F分别在棱AA1,BC上,且AE=2EA1,问点F在何处时,EF⊥AD.
(1)求证:面O1DC⊥面ABCD;
(2)若∠A1AB=60°,求二面角C-AA1-B大小;
(3)若点E,F分别在棱AA1,BC上,且AE=2EA1,问点F在何处时,EF⊥AD.
证明:(1)连AC,BD,A1C1,则O为AC,BD的交点,
O1为A1C1,B1D1的交点.
由平行六面体的性质知:A1O1||OC且A1O1=OC
∴四边形A1OCO1为平行四边形,A1O||O1C
又∵A1O⊥平面ABCD∴O1C⊥平面ABCD
又∵O1C⊂平面O1DC∴平面O1DC⊥平面ABCD
(2)过点O作OM⊥AA1,垂足为M,连接BM.∵A1O⊥平面ABCD,∴A1O⊥OB
又∵OB⊥OA∴OB⊥平面A1AO.由三垂线定理得AA1⊥MB∴∠OMB为二面角C-AA1-B的平面角.
在Rt△AMB中,∠MAB=60°,∴MB=
3
2AB
又∵BO=
2
2AB,∴sin∠OMB=
6
3
∴∠OMB=arcsin
6
3
二面角C-AA1-B的大小为 arcsin
6
3
(3)作EH⊥平面ABCD,垂足为H,则EH∥A1O,点H在直线AC上,
且EF在平面ABCD上的射影为HF.
由三垂线定理及其逆定理,知EF⊥AD⇔FH∥AB
∵AE=2EA1,∴AH=2HO,从而CH=2AH又∵HF∥AB,∴CF=2BF
从而EF⊥AD⇔CF=2BF∴当F为BC的三等分点(靠近B)时,有EF⊥AD
O1为A1C1,B1D1的交点.
由平行六面体的性质知:A1O1||OC且A1O1=OC
∴四边形A1OCO1为平行四边形,A1O||O1C
又∵A1O⊥平面ABCD∴O1C⊥平面ABCD
又∵O1C⊂平面O1DC∴平面O1DC⊥平面ABCD
(2)过点O作OM⊥AA1,垂足为M,连接BM.∵A1O⊥平面ABCD,∴A1O⊥OB
又∵OB⊥OA∴OB⊥平面A1AO.由三垂线定理得AA1⊥MB∴∠OMB为二面角C-AA1-B的平面角.
在Rt△AMB中,∠MAB=60°,∴MB=
3
2AB
又∵BO=
2
2AB,∴sin∠OMB=
6
3
∴∠OMB=arcsin
6
3
二面角C-AA1-B的大小为 arcsin
6
3
(3)作EH⊥平面ABCD,垂足为H,则EH∥A1O,点H在直线AC上,
且EF在平面ABCD上的射影为HF.
由三垂线定理及其逆定理,知EF⊥AD⇔FH∥AB
∵AE=2EA1,∴AH=2HO,从而CH=2AH又∵HF∥AB,∴CF=2BF
从而EF⊥AD⇔CF=2BF∴当F为BC的三等分点(靠近B)时,有EF⊥AD
边长已知平行六面体ABCD-A1B1C1D1中,底面的为a的正方形,侧棱AA1为b,
、已知平行六面体ABCD—A1B1C1D1的底面是边长为a的菱形,O为菱形ABCD的中心,∠BAD=
在一个正方体ABCD-A1B1C1D1中,P为正方形A1B1C1D1四边上的动点,O为底面正方形ABCD的中心,M,N分
如图,在正方形ABCD-A1B1C1D1中,E,F分别是棱C1D1,B1C1的中点,O是底面A1B1C1D1的中心,那么
如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点
在正方体ABCD-A1B1C1D1,G为CC1的中点,O为底面ABCD的中心.
已知边长为a的正方体ABCD—A1B1C1D1,O为底面A1B1C1D1的中心,E为棱A1B1上的一点,且AE+EO的长
如图,已知平行六面体ABCD—A1B1C1D1的底面 ABCD是菱形,且∠C1CB=∠C1CD=∠BCD 求证 CA1⊥
在长方体ABCD-A1B1C1D1中,O、O1分别为四边形ABCD、A1B1C1D1的中心,
已知ABCD-A1B1C1D1是一个棱长为1的正方体,o1是底面A1B1C1D1的中心,M是BB1上的点,
如图,O1是正方体ABCD-A1B1C1D1的上底面A1B1C1D1的中心,M是对角线A1C和截面B1D1A的交点,
如图,已知直四棱柱ABCD-A1B1C1D1的底面边长和侧棱长均为1,且满足∠BAD=60°,O1为A1C1的中点.