平面向量a,b,e满足|e|=1,a·e=1,b·e=2,|a-b|=2,则a·b的最小值为____
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 12:16:45
平面向量a,b,e满足|e|=1,a·e=1,b·e=2,|a-b|=2,则a·b的最小值为____
坐标运算
建立适当平面直角坐标系,使得e=(1,0)
设a=(x,y),b=(m,n)
则ae=x,得x=1,be=m,得m=2
于是a=(1,y),b=(2,n)
a-b=(-1,y-n),ab=2+yn
于是1+(y-n)²=4
得(y-n)²=3
于是问题转化为(y-n)²=3,求2+yn最小值
……………………………………
高三求法:不等式法
(y-n)²=y²+n²-2yn
≥2|yn|-2yn,
于是3≥2|yn|-2yn
当yn>0时显然成立
当yn<0时,3≥-4yn,得yn≥-3/4,于是2+yn≥5/4,最小值为5/4
………………………………
高一求法,y-n=±√3,即y=n±√3
2+yn=2+n²±√3n
二次函数顶点坐标公式得最小值为5/4
建立适当平面直角坐标系,使得e=(1,0)
设a=(x,y),b=(m,n)
则ae=x,得x=1,be=m,得m=2
于是a=(1,y),b=(2,n)
a-b=(-1,y-n),ab=2+yn
于是1+(y-n)²=4
得(y-n)²=3
于是问题转化为(y-n)²=3,求2+yn最小值
……………………………………
高三求法:不等式法
(y-n)²=y²+n²-2yn
≥2|yn|-2yn,
于是3≥2|yn|-2yn
当yn>0时显然成立
当yn<0时,3≥-4yn,得yn≥-3/4,于是2+yn≥5/4,最小值为5/4
………………………………
高一求法,y-n=±√3,即y=n±√3
2+yn=2+n²±√3n
二次函数顶点坐标公式得最小值为5/4
设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?
已知向量a≠e,|e|=1满足:对任意t∈R,恒有|a-te|≥|a-e|,则有什么向量垂直 A.a和b B.a和a-e
已知向量a=2e,b=-e,判断a与b是否共线?
若n阶方阵A与B满足AB+A+B=E(E为单位矩阵).证明(1)B+E为可逆矩阵(2)(B+E)^(-1)=1/2(A+
A ,B为二阶方阵,且2A^(-1)B=B-4E.证明:A-2E可逆.
设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵
线性代数证明设方阵B=(E+A)-1(E-A)证明:(E+B)(E+A)=2E
设a>b>e,证明存在ξ∈(a,b),使b(e^a)-a(e^b)=(1-e^ξ)ξ(b-a)
已知A,B为3阶矩阵,且满足关系式2A^-1B=B-4E,其中E是3阶单位矩阵
已知向量a≠e,|e|=1,对任意t属于R,恒有|a-te|≥|a-e|,则 A.a⊥e B.a⊥(a-e) C.e⊥(
设A是阶矩阵,且满足A^3=6E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1
已知向量a=3e-2e',b=4e+e',其中e=(1,0),e'=(0,1),求 ①a*b,la