(2010•德州)如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 01:46:22
(2010•德州)如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于点G,交AB于点F.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.
(1)求证:BC与⊙O相切;
(2)当∠BAC=120°时,求∠EFG的度数.
(1)证明:连接OE.
∵AB=AC且D是BC中点,
∴AD⊥BC.
∵AE平分∠BAD,
∴∠BAE=∠DAE.
∵OA=OE,
∴∠OAE=∠OEA,
则∠OEA=∠DAE,
∴OE∥AD,
∴OE⊥BC,
∴BC是⊙O的切线.
(2)∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,AD⊥BC,EO∥AD,
∴∠BAD=∠EOB=60°且AE平分∠BAD,
∴∠EAO=∠EAG=30°
又∵∠EFG与∠GAE都对应弧GE
∴∠EFG=∠GAE=30°(同弧所对的圆周角相等)
∴∠EFG=30°.
∵AB=AC且D是BC中点,
∴AD⊥BC.
∵AE平分∠BAD,
∴∠BAE=∠DAE.
∵OA=OE,
∴∠OAE=∠OEA,
则∠OEA=∠DAE,
∴OE∥AD,
∴OE⊥BC,
∴BC是⊙O的切线.
(2)∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,AD⊥BC,EO∥AD,
∴∠BAD=∠EOB=60°且AE平分∠BAD,
∴∠EAO=∠EAG=30°
又∵∠EFG与∠GAE都对应弧GE
∴∠EFG=∠GAE=30°(同弧所对的圆周角相等)
∴∠EFG=30°.
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于
(2014•东昌府区三模)已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上
在△ABC中,AB=AC,O是AB上一点,以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.点D为BC的中点,连结
如图,已知在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,以AD为直径的⊙O经过点E,且交AC于
如图,在△ABC中,∠BAC=90°,O是边BC的中点,OE平分∠AOB且交AB于点E,OD平分∠AOC且交AC于点D,
1)如图1,△ABC中,AB>AC,AD平分∠BAC交BC于点D,在AB上截取AE=AC,过点E作EF‖BC交AD于点F
如图,已知在Rt△ABC中,∠C=90°,AE平分∠BAC,交BC于点E,点D在AB上,DE⊥AE,⊙O是Rt△ADE的
如图,在△ABC中,AB=AC,以AB为直径的圆O交AC于点E,交BC于点D.求证 (1)点D是BC中点 (2)△BEC
(2014•宜宾)如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E
如图,△ABC中,以BC为直径的⊙O交AB于点D,CA是⊙O的切线,AE平分∠BAC交BC于点E,交CD于点F.
(1)如图,在△ABC中,AB=AC,D是底边BC上的一点,过点D作BC的垂线,交AB于点E,交AC的延长线于F,则△A
如图1,△ABC中,AB>AC,AD平分∠BAC交BC于点D,在AB上截取AE=AC,过点E作EF∥BC交AD于点F.