f(x)=(2+e^x)/1+e^2x)+ | x|sin1/x求 1)lim[x→+∞]f(x); 2)lim[x→-
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:28:48
f(x)=(2+e^x)/1+e^2x)+ | x|sin1/x求 1)lim[x→+∞]f(x); 2)lim[x→-∞]f(x); 3)lim[x→∞]f(x)
x趋于+∞时,
(2+e^x)/(1+e^2x)
=(2/e^x +1)/(1/e^x +e^x)
那么1/e^x趋于0,e^x趋于无穷,
所以(2+e^x)/(1+e^2x)趋于0
而|x| sin1/x= sin1/x /(1/x)趋于1
所以
lim[x→+∞]f(x)= 1
而x趋于-∞时,e^x趋于0
(2+e^x)/(1+e^2x)=2
|x| sin1/x= -sin1/x /(1/x)趋于 -1
所以
lim[x→ -∞]f(x)=2 -1=1
因此
lim[x→+∞]f(x)=lim[x→ -∞]f(x) =1
所以得到
lim[x→ ∞]f(x)= 1
(2+e^x)/(1+e^2x)
=(2/e^x +1)/(1/e^x +e^x)
那么1/e^x趋于0,e^x趋于无穷,
所以(2+e^x)/(1+e^2x)趋于0
而|x| sin1/x= sin1/x /(1/x)趋于1
所以
lim[x→+∞]f(x)= 1
而x趋于-∞时,e^x趋于0
(2+e^x)/(1+e^2x)=2
|x| sin1/x= -sin1/x /(1/x)趋于 -1
所以
lim[x→ -∞]f(x)=2 -1=1
因此
lim[x→+∞]f(x)=lim[x→ -∞]f(x) =1
所以得到
lim[x→ ∞]f(x)= 1
设函数f x=e^2x-2x,lim f'(x)/e^x -1等于 ,x→0
求lim(x→0)[(x^2sin1/x)/sinx]
lim(x→0)(1-x^2-e^-x)/sinx
lim[f(x)]^g(x)=e^lim[f(x)-1]g(x).经验公式,
lim(x→∞)e^x/[(1+1/x)^x^2]求极限,
已知lim(x→0) f(x)/(1-cosx) =2 求lim(x→0) [1+f(x)]^½
求极限lim(x~0)((e^x+e^2x+e^3x)/3)^1/x
已知lim(x→0) [f(0)-f(2x)]/x=1,求f'(0).
lim(x+e^2x)^(1/sinx)
设f(x)=lim(n→∞)(x^(2)e^(n(x-1))+ax+b)/(e^(n(x-1))+1)确定a b 使f(
设函数f(x)有二阶连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’
设函数f(x)有二姐连续导数,且(x->0)lim[f(x)-a]/[e^x^2-1]=0,(x->0)lim[f ‘’