作业帮 > 数学 > 作业

怎么作两个圆的外切圆.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 08:17:44
怎么作两个圆的外切圆.
两个不等的圆的位置关系为外离,如何作一个圆与这两个圆相切,与这两个圆相切的圆的圆心有什么规律.

上图圆A与圆B是两个不等的圆,位置关系为外离,圆1、圆2、圆3、圆4、圆5都与圆A、圆B相切.请说出圆1、圆2、圆3、圆4等等所有都与圆A、圆B相切的圆的圆心的规律.
尽可能附加图片,并附上作图顺序和理由,
怎么作两个圆的外切圆.
设⊙A, ⊙B半径分别为a, b.
半径为r的⊙P与二者都外切, 则有AP = a+r, BP = b+r.
相减得AP-BP = a-b, AP-BP为定值.
因此圆心P的轨迹为以A, B为焦点, 实轴长|a-b|的双曲线的一支.
同样讨论易知, 与⊙A, ⊙B都内切的圆的圆心的轨迹是该双曲线的另一支.
此外还有与⊙A, ⊙B分别内切外切的圆, 其圆心的轨迹是以A, B为焦点, |a+b|为实轴的另一双曲线.

作图步骤很简单,比如作与两圆都外切的圆 (其它相切情况作法都是类似的).

任取r ≥ |a-b|.
以A为圆心作半径a+r的圆,以B为圆心作半径b+r的圆,两圆交于点P(两个交点可任取一个).
连接PA,交⊙A于C.
以P为圆心PC为半径作⊙P,则与⊙A, ⊙B都外切.
理由:由作图法知PA = a+r,PB = b+r.
于是⊙P半径PC = PA-AC = r.
P到⊙A, ⊙B的圆心距分别等于半径和a+r与b+r,故与二者都外切.
另外,图中画出了P的轨迹,是双曲线的一支.
下图显示了4种相切情况,并画出了圆心轨迹.