在长方形ABCD中,AB=mAD,其中m大于等于1,将它沿EF折叠(点E,F分别在边AB,CD上),使点B落在AD边上的
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 03:56:58
在长方形ABCD中,AB=mAD,其中m大于等于1,将它沿EF折叠(点E,F分别在边AB,CD上),使点B落在AD边上的点N处,MN与CD交于点P,连接EP,设AM/AD=n,其中0小于n小于等于1.
(1)当n=1,m=2时则BE /AE=?
(2)当n=1/2,M值发生变化时,求证:EP=AE+DP
(3)当m=2,你的值发生变化时,(BE-CF)/AM旳值是否发生变化?说明理由.
(1)当n=1,m=2时则BE /AE=?
(2)当n=1/2,M值发生变化时,求证:EP=AE+DP
(3)当m=2,你的值发生变化时,(BE-CF)/AM旳值是否发生变化?说明理由.
(1)证明:延长PM交BA延长线于点G,
则∠PMD=∠GMA,
∵四边形ABCD是矩形,
∴∠BAD=∠B=∠D=90°,
∴∠GAM=∠D=90°,
∵M为AD的中点,
∴AM=MD,
∵在△GAM和△PDM中,
∠GMA=∠PMD AM=DM ∠GAM=∠D ,
∴△GAM≌△PDM(ASA),
∴AG=DP,GM=PM,
由折叠的性质可得:∠EMN=∠B=90°,
∴EM⊥MP,
∴EG=EP,
∵EG=AE+AG=AE+DP,
∴EP=AE+DP;
(2)BE-CF AM 的值不变.
理由:连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,
∵EM=EB,∠MEF=∠BEF,
∴EF⊥MB,
即∠FQO=90°,
∵四边形FKBC是矩形,
∴KF=BC,FC=KB,
∵∠FKB=90°,
∴∠KBO+∠KOB=90°,
∵∠QOF+∠QFO=90°,∠QOF=∠KOB,
∴∠KBO=∠OFQ,
∵∠A=∠EKF=90°,
∴△ABM∽△KFE,
∴EK AM =KF AB ,
即BE-BK AM =BC AB ,
∵AB=2AD=2BC,BK=CF,
∴BE-CF AM =1 2 ,
∴BE-CF AM 的值不变.
则∠PMD=∠GMA,
∵四边形ABCD是矩形,
∴∠BAD=∠B=∠D=90°,
∴∠GAM=∠D=90°,
∵M为AD的中点,
∴AM=MD,
∵在△GAM和△PDM中,
∠GMA=∠PMD AM=DM ∠GAM=∠D ,
∴△GAM≌△PDM(ASA),
∴AG=DP,GM=PM,
由折叠的性质可得:∠EMN=∠B=90°,
∴EM⊥MP,
∴EG=EP,
∵EG=AE+AG=AE+DP,
∴EP=AE+DP;
(2)BE-CF AM 的值不变.
理由:连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,
∵EM=EB,∠MEF=∠BEF,
∴EF⊥MB,
即∠FQO=90°,
∵四边形FKBC是矩形,
∴KF=BC,FC=KB,
∵∠FKB=90°,
∴∠KBO+∠KOB=90°,
∵∠QOF+∠QFO=90°,∠QOF=∠KOB,
∴∠KBO=∠OFQ,
∵∠A=∠EKF=90°,
∴△ABM∽△KFE,
∴EK AM =KF AB ,
即BE-BK AM =BC AB ,
∵AB=2AD=2BC,BK=CF,
∴BE-CF AM =1 2 ,
∴BE-CF AM 的值不变.
如图,将边长为12cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落
如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C
如图,在边长4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落座在AD边上的中点M处,点C落
如图 将边长为1的正方形ABCD折叠,使点A落在边CD上的点M处,折痕EF分别交AD、BC于点E、F,边AB折叠后交边B
如图,将边长为1的正方形ABCD折叠,使点A落在边CD上,的点M处,折痕EF分别交AD,BC于点E,F.边AB折叠后交
已知长方形ABCD中AB=8 BC=10 在边CD取上一点E 将三角形ADE折叠使点D恰好落在BC边上的点F 求CE长
如图,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,
如图在长方形ABCD中AD=6,AB=10在AD上取一点E,将△EDC沿EC折叠,使点D恰好落在AB边上的点D’处,求D
如图,在长方形ABCD中,AD=6,AB=10,在AD上取一点E,将三角形EDC沿EC折叠,使点D恰好落在AB边上的点D
如图在长方形ABCD中AD=6,AB=10,在AD上取一点E,将△EDC沿EC折叠,使点D恰好落在AB边上的点D’处,求
(2012•香坊区二模)如图,在矩形ABCD的边AB上有一点E,边AD上有一点F,将此矩形沿EF折叠使点A落在BC边上的
正方形ABCD的边长为2㎝,点E、F分别在边AB、CD上,沿EF折叠,点A落在点G处,点D落在点H处,点H为BC中点,G