若f(x)在[0,1]上连续,(0,1)内可导,f(0)=0,f(1)=1证明在(0,1)内存在ξ1,ξ2,ξ3,且ξ1
设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1,试证明.必存在ξ∈(
设函数f(x)在[1,2]上连续,在(1,2)内可导,且f(2)=0,F(x)=(x-1)f(x) 证明:至少存在一点ξ
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
f(x)在[0,1]上连续,在(0,1)上可导,且f(1)=0,证明在(0,1)内存在一点c,使得f(c)+(1-e^-
设f(x)在[0,1]上有连续导数,且f(x)=f(0)=0.证明
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)
f(x)在(0.1)上连续且单调增,证明∫[0,1]f(x)dx
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
设f(x)在【0,1】上连续,(0,1)内可导,且f(0)=f(1)=1,证明:在(0,1)内至少存在一点ξ,使f(ξ)
设函数f(x)在[0,1]上连续,在(0,1)内可导且f(0)=f(1)=0,f(12)=1,试证明至少存在一点ξ∈(0
设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明:至少存在一点ξ∈(0,1),使得f
设f(x)在[0,1]上连续,证明在(0,1)内至少存在一点ξ,使∫f(x)dx=(1-ξ)f(ξ)