作业帮 > 数学 > 作业

实对称矩阵A满足A的2次方-5A+6E=0证明A是正定的?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:24:14
实对称矩阵A满足A的2次方-5A+6E=0证明A是正定的?
实对称矩阵A满足A的2次方-5A+6E=0证明A是正定的?
用2次型证
A为实对称矩阵
A'=A
5A=A^2+6E
任意向量X不为0
X'(5A)X=X'(A^2+6E)X
=X'(A^2)X+X'(6E)X
=X'A'AX+X'(6E*E)X
=(AX)'*(AX)+6(EX)'*(EX)
显然向量(AX)'与向量(AX)的点积非负,(EX)'与(EX)点积为正
故X'(5A)X>0
所以5A正定
从而A正定