f(x)是定义域在(0,+∞)上的增函数,对正函数X,Y都有f(xy)=f(x)+f(y)成立,
f(x)是定义在(0,+∞)上的增函数,对正实数x、y都有f(xy)=f(x)+f(y)成立,且f(2)=1
f(x)是定义在(0,+∞)上的增函数,对正实数x、y都有f(xy)=f(x)+f(y)成立,则不等式f(㏒₂
设函数的定义域为(0,+∞),且对任意的正实数x,y,有f(xy)=f(x)+f(y)恒成立,已知f
设f(x)是定义域(0,正无穷)上的单调递增函数,且对定义域内任意x,y都有f(xy)=f(x)+f
已知定义域在(0,正无穷)上得函数f(x),对任意的实数x>0,y>0,都有f(xy)=f(x)+f(y)成立,且当x>
f(x)是定义在(0,正无穷)上的增函数,对正实数x,y都有f(xy)=f(x)+f(y) ,求不等式f(㏒2 X)
设函数f(x)的定义域是是(0,+无穷)且对任意的正实数x,y都有f(xy)=f(x)+f(y)恒成立
已知函数f(x)定义域在R上的函数,且对任意的x,y都有f(x+y)=f(x)+f(y)-1成立.当x>0时,f(x)>
设f(x)是定义域在(0,+∞)上的非常函数,对任意的x>0,y>0,恒有f(xy)=f(x)+f(y)成立,
设函数f(x)是定义在(0,正无穷大)上的增函数,且对任意x,y属于(0.正无穷大)都有f(xy)=f(x)+f(y),
函数y=f(x)的定义域为R,对任意x,y∈R,都有f(x+y)=f(x)+f(y),f(xy)=f(x)f(y)恒成立
函数的性质及应用设f(x)是定义域为正实数上的增函数,对任意x>0,y>0,f(xy)=f(x)+f(y)总成立.求证: