如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 19:11:37
如图,在矩形ABCD中,AF、BE、CE、DF分别是矩形的四个角的角平分线,E、M、F、N是其交点,求证:四边形EMFN是正方形.
证明:∵四边形ABCD是矩形,
∴四个内角均为90°,
∵AF,BE,CE,DF分别是四个内角的平分线,
∴∠EBC=∠ECB=45°,
∴△EBC为等腰直角三角形,
∴∠E=90°,
同理∠F=∠EMF=∠ENF=90°,
∴四边形MFNE为矩形,
∵AD=BC,∠E=∠F=90°,∠DAF=∠EBC=45°,
∴△DAF≌△CBE(AAS)
∴AF=BE,
∵AM=BM,
∴AF-AM=BE-BM,即FM=EM,
∴四边形MFNE是正方形.
再问: 怎么做
∴四个内角均为90°,
∵AF,BE,CE,DF分别是四个内角的平分线,
∴∠EBC=∠ECB=45°,
∴△EBC为等腰直角三角形,
∴∠E=90°,
同理∠F=∠EMF=∠ENF=90°,
∴四边形MFNE为矩形,
∵AD=BC,∠E=∠F=90°,∠DAF=∠EBC=45°,
∴△DAF≌△CBE(AAS)
∴AF=BE,
∵AM=BM,
∴AF-AM=BE-BM,即FM=EM,
∴四边形MFNE是正方形.
再问: 怎么做
如图,四边形ABCD为平行四边形,BE、CE、AF、DF分别为四个角的平分线.求证:MENF为矩形
矩形ABCD中,四个内角的角平分线组成四边形EMFN,判断四边形EMFN的形状,并说明原因,
如图,在矩形ABCD中,AE、BE、CG、DG分别是各内角的平分线,E、F、G、H分别为它们的交点.求证:四边形EFGH
如图,平行四边形ABCD四个内角的角平分线分别交于点E,F,G,H.求证:四边形EFGH是矩形
如图,在平行四边形ABCD中,E,F为BC上的两点,且BE=CF,AF=DE,求证四边形ABCD是矩形
如图,在四边形ABCD中,E.F分别是AD,BC,的中点,AF与BE交于点G,CE和DF交于点H,求证四边形EGFH是平
平行四边形ABCD中E,F分别是AD,BC的中点,连结AF,BE交于点M,连结DF,CE交点于点N 连结BM.
已知:如图,矩形ABCD的外角平分线分别交与E、F、G、H.求证:四边形EFGH是正方形
已知:四边形ABCD各角的平分线分别相交于点E,F,G,H求证:四边形EFGH是矩形.
如图,平行四边形abcd中,e,f分别是对角线bd上的两点,且be=df连接ae,af,ce,cf.求证 ce平行cf!
如图,在矩形ABCD中,F是CD的中点,在BC上取一点E,使AF平分∠DAE,又AE=DC+CE,求证:四边形ABCD是
已知:如图,平行四边形ABCD各角的平分线分别相交于点E,F,G,H.求证四边形EFGH是矩形.suqiuzhengmi