作业帮 > 数学 > 作业

∫ (0,x)(1+x+2t)dt的最小值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 08:59:57
∫ (0,x)(1+x+2t)dt的最小值
∫ (0,x)(1+x+2t)dt的最小值
令f(x)=∫ (0,x)(1+x+2t)dt
f(x)=[(1+x)t+t^2]|(0,x)
=x+x^2+x^2
=2x^2+x
f'(x)=4x+1=0
得唯一驻点x=-1/4
f''(x)=4>0
x=-1/4取得极小值,从而取得最小值=f(-1/4)=2*1/16-1/4=-1/8.
再问: 当X=-1/4,最小值是-1/8,可是,是(0,X) X不是要大于0吗?
再答: 对于积分来说,上限和下限不一定哪个大的,所以 x可以大于0,也可以小于0,还可以等于0! 不懂可追问哦!
再问: 另一个人给我说答案是在x=0处有最小值0,他说是个变上限的函数.对吗?
再答: 应该说,x=0时取得f(0)=0,但不是最小值! 这是一个变上限的函数.
再问: 这么说∫ (0,0)(1+x+2t)dt是对的,它表示的是一个点的定积分吗?
再答: ∫ (0,0)(1+x+2t)dt=0没错!上限=下限时,积分=0 表示的是一个点的定积分! 但本题最小值不等于0,两码事!
再问: 哦,明白了,谢谢!
再答: 不谢!