如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=1,点E是SD上的点,且DE=λ(0<λ≤1)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/17 22:51:44
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=1,点E是SD上的点,且DE=λ(0<λ≤1)
1)求证:对任意的λ∈(0,1]都有AC⊥BE;2)若二面角C-AE-B的大小为30°,求λ,的值.
1)求证:对任意的λ∈(0,1]都有AC⊥BE;2)若二面角C-AE-B的大小为30°,求λ,的值.
1.连BD
∵SD⊥面ABCD
∴SD⊥AC
又AC⊥BD(正方形的对角线互相垂直)
SD∩BD=面SDB
∴AC⊥面SDB
∵BE∈面SDB
∴AC⊥BE
2.作EF∥DC,交SC于F,连BF
作DG⊥AE于G,作GH∥EF,交BF于H,连CG、CH
∵DC∥AB
∴EF∥AB
∴F∈面ABE
∵SD⊥面ABCD
∴SD⊥DC
又DC⊥AD
∴DC⊥面SAD
∴GH⊥面SAD
∴GH⊥AE
又DG⊥AE
∴AE⊥面CDGH
∴AE⊥CG
∴∠CGH就是二面角C-AE-B的平面角
∴∠CGD=60°
DG=√3/3
AG=√6/3
DE:AD=GD:AG
∴λ=DE=√2/2
∵SD⊥面ABCD
∴SD⊥AC
又AC⊥BD(正方形的对角线互相垂直)
SD∩BD=面SDB
∴AC⊥面SDB
∵BE∈面SDB
∴AC⊥BE
2.作EF∥DC,交SC于F,连BF
作DG⊥AE于G,作GH∥EF,交BF于H,连CG、CH
∵DC∥AB
∴EF∥AB
∴F∈面ABE
∵SD⊥面ABCD
∴SD⊥DC
又DC⊥AD
∴DC⊥面SAD
∴GH⊥面SAD
∴GH⊥AE
又DG⊥AE
∴AE⊥面CDGH
∴AE⊥CG
∴∠CGH就是二面角C-AE-B的平面角
∴∠CGD=60°
DG=√3/3
AG=√6/3
DE:AD=GD:AG
∴λ=DE=√2/2
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD.SD=AD=a,点E是SD上的点,且DE=λa(0
如图,在底面是菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=2SA,点P在SD上,且SD=3
四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD,SB=根号3,
如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB平行DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的
四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD,M是SA上的一点,且SD=根号3.若MD⊥SB,求MD与
数学立体几何 证明题如图,四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD,M是SA上的一点,且SD=√3
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB,点M是SD的中点,AN⊥SC,且交S
如图已知ABCD是正方形,B=6,SD⊥平面ABCD,且SD=8,(1)求点S到AC的距离 (2)求SB所在直线与平面A
如图,四棱锥S-ABCD中,SD垂直底面ABCD,AB平行DC,AD垂直DC,AB=AD=1DC=SD=2,E为SB上的
如图四棱锥S-ABCD的底面是边长为1的正方形,SD⊥底面ABCD.M是SA上的一点,且SD=√3 若MD⊥SB
如图:S是平行四边形ABCD平面外一点,M,N分别是AD,SB上的中点,且SD=DC,SD⊥DC,求证:
如下图,四棱锥S-ABCD的底面是矩形,SA⊥底面ABCD,E,F分别是SD,SC的中点.求证:(1)BC⊥平面SAB