作业帮 > 数学 > 作业

关于棱锥和球的问题我想要任意三棱锥和四棱锥的内切球和外接球的半径的公式

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 22:17:05
关于棱锥和球的问题
我想要任意三棱锥和四棱锥的内切球和外接球的半径的公式
关于棱锥和球的问题我想要任意三棱锥和四棱锥的内切球和外接球的半径的公式
正四面体
外接球半径:(a√6)/4
内接球半径:(a√6)/12
1、正三棱锥的外接球半径求法:
设A-BCD是正三棱锥,侧棱长为a,底面边长为b,
则外接球的球心一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做侧棱AD的垂直平分线交三棱锥的高AM于O,则0就是外接球的球心,AO,DO是外接球的半径.
(当三棱锥的侧棱与它的对面所成的线面角小于90度时,即角DAE小于90度时,球心在棱锥的内部;当线面角等于90度时,球心恰好在底面正三角形的中心M上;当线面角大于90度时,球心在棱锥的外部,在棱锥高AM的延长线.下面我给出的解法是第一种情况,球心在棱锥的内部.另两种情况你自己可以照理推出.)
设AO=DO=R
则,DM=2/3DE=2/3*2分之根号3倍的b=b/根号3
AM=根号(a^2-b^2/3),
OM=AM-A0=根号(a^2-b^2/3)-R
由DO^2=OM^2+DM^2得,
R=根号3倍的a^2÷2倍的根号(3a^2-b^2)
2、内接球半径
同样是这个三棱锥.内接球的球心也一定在这个三棱锥的高上.设高为AM,连接DM交BC于E,连接AE,然后在面ADE内做角AED的平分线交三棱锥的高AM于O,做OF垂直于AE,则0就是内接球的球心,OM=OF=r
AE=根号(a^2-b^2/4)
FE=ME=1/3AM=6分之根号3倍的b,
AF=AE-FE=根号(a^2-b^2/4)-6分之根号3倍的b
AO=AM-r=根号(a^2-b^2/3)-r
由AO^2=OF^2+AF^2得
r=[根号3倍b^2+3b倍根号(4a^2-b^2)]/12倍根号(3a^2-b^2)