三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是整数n的倍数,整数n的最大可能值是多少?并证明结论
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 17:39:38
三个大于3的质数a,b,c满足关系式2a+5b=c,则a+b+c是整数n的倍数,整数n的最大可能值是多少?并证明结论
分析:根据题义,我们取两组值进行观察分析:
(1) a=11 b=5 则c=22+25=47 a+b+c=63
(2) a=13 b=7 则c=26+35=61 a+b+c=81
∵(63,81)=9 ∴n最大可能值是9.
证明:∵2a+5b=c ∴a+b+c=a+b+2a+5b=3a+6b=3(a+2b) ∴3|a+b+c
设a、b被3除余数为ra、rb.由于a、b是质数,故ra、rb值必是1或2.所以存在以下两种情况:
(1) ra≠rb,则其中必有一个为1、另一个为2.
∵1+2=3 ∴ c=2a+5b=2(a+b)+3b ∴3|c
这与c是质数相矛盾,故这种情况不存在.
(2) ra=rb,则 3|a-b.∵a+2b=3b+(a-b) ∴3|a+2b ∴9| a+b+c
命题成立,即n=9.
(1) a=11 b=5 则c=22+25=47 a+b+c=63
(2) a=13 b=7 则c=26+35=61 a+b+c=81
∵(63,81)=9 ∴n最大可能值是9.
证明:∵2a+5b=c ∴a+b+c=a+b+2a+5b=3a+6b=3(a+2b) ∴3|a+b+c
设a、b被3除余数为ra、rb.由于a、b是质数,故ra、rb值必是1或2.所以存在以下两种情况:
(1) ra≠rb,则其中必有一个为1、另一个为2.
∵1+2=3 ∴ c=2a+5b=2(a+b)+3b ∴3|c
这与c是质数相矛盾,故这种情况不存在.
(2) ra=rb,则 3|a-b.∵a+2b=3b+(a-b) ∴3|a+2b ∴9| a+b+c
命题成立,即n=9.
设a是最小的质数,b是最大的负整数,c是绝对值最小的实数,则a,b,c,三个数的和是多少
若|a|=8,|b|=1,c是最大的负整数,则a+b-c的值是多少?
1.已知整数a、b、c、d满足a*b*c*d=25,且a>b>c>d,则|a+b|+|c+d|的值是多少?
已知a,b,c三个数中有两个奇数,一个偶数,n是整数,若S=(a+n+1)(b+2n+2)(c+3n+3),则问S的奇偶
对于任意的整数n,能整除(n+3)(n-3)-(n+2)(n-2) 的整数是 ( ) a. 4 b. 3 c. 5 d.
若|a|=3,b=-2,c是最大的负整数,求a+b-c的值.
若|a|=2,b=3,C是最大的负整数,求a-b+c的值
已知a、b、c三个数中有两个奇数、一个偶数,n是整数.如果S=(a+n+2003)(b+2n+2004)(c+3n+20
A,B,C是整数,A^2+B^3=C^4.求C的最小值,
初一有理数的乘法已知整数a,b,c,d满足abcd=25,且a大于b大于c大于d,求|a+b |+ |c+d |
三个不同的质数a,b,c满足ab^b*c+a=2000,则a+b+c=?
已知三个整数abc,满足a+b+c=13,若b/a=c/b,求a的最大值和最小值,并求出此时相应的bc