作业帮 > 数学 > 作业

如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF交于点O,∠AOF=90°.求证:BE=CF.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 20:17:47
如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF交于点O,∠AOF=90°.求证:BE=CF.
(2)如图2,在正方形ABCD中,点E、H、F、G分别在边AB、BC、CD、DA上,
EF、GH交于点O,∠FOH=90°,EF=4.求GH的长.
如图1,在正方形ABCD中,点E、F分别在边BC、CD上,AE、BF交于点O,∠AOF=90°.求证:BE=CF.
(1)
证明:
∵∠AOF=∠ABE=90º
∴∠AEB+∠CBF=90º
∠AEB+∠BAE=90º
∴∠CBF=∠BAE
又∵∠ABE=BCF=90º,AB=BC
∴⊿ABE≌⊿BCF(ASA)
∴BE=CF
(2)作BM//EF交CD于M,AN//GH交BC于N
∵AB//CD,AD//BC
∴四边形EFMB和ANHG都是平行四边形
∴GH=AN,EF=BM
∵∠FOH=90º
∴BM⊥AN
∴此时,题同(1)
两三角形全等
∴GH=EF=4