如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/11 05:39:51
如图,正方体ABCD-A1B1C1D1中,E,F分别为棱DD1,AB上的点.已知下列判断:①A1C⊥平面B1EF;②△B1EF在侧面BCC1B1上 的正投影是面积为定值的三角形;③在平面A1B1C1D1内总存在与平面B1EF平行的直线;④平 面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,其中正确判断的个数有( )
A.1个
B.2个
C.3个
D.4个
A.1个
B.2个
C.3个
D.4个
如图
对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.
对于②△B1EF在侧面BCC1B1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB1,而E点在面上的投影到此棱BB1的距离是定值,故正确;
对于③在平面A1B1C1D1内总存在与平面B1EF平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;
对于④平 面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如F与A重合,E与D重合时的二面角与F与B重合,E与D重合时的情况就不一样.故此命题不正确
综上,②③是正确的
故选B
对于①A1C⊥平面B1EF,不一定成立,因为A1C⊥平面AC1D,而两个平面面B1EF与面AC1D不一定平行.
对于②△B1EF在侧面BCC1B1上 的正投影是面积为定值的三角形,此是一个正确的结论,因为其投影三角形的一边是棱BB1,而E点在面上的投影到此棱BB1的距离是定值,故正确;
对于③在平面A1B1C1D1内总存在与平面B1EF平行的直线,此两平面相交,一个面内平行于两个平面的交线一定平行于另一个平面,此结论正确;
对于④平 面B1EF与平面ABCD所成的二面角(锐角)的大小与点E的位置有关,与点F的位置无关,此结论不对,与两者都有关系,可代入几个特殊点进行验证,如F与A重合,E与D重合时的二面角与F与B重合,E与D重合时的情况就不一样.故此命题不正确
综上,②③是正确的
故选B
在正方体ABCD-A1B1C1D1中,E,F分别是AB和BC的中点,试问在棱DD1上能否找到一点M,使BM⊥平面B1EF
在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为棱AB,BC的中点,则C1到平面B1EF的距离是多少?(说明
在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是棱AB,BC的中点,则C1到平面B1EF的距离
如图,棱长为2的正方体ABCD-A1B1C1D1中.E、F分别为DD1、DB的中点
如图,正方体ABCD-A1B1C1D1中,P,M,N,分别为棱DD1,AB,BC的中点,求证PB⊥平面MNB1
如图正方体ABCD-A1B1C1D1中,E,F分别为AB,CC1的中点,则异面直线A1C与EF所成角的余弦值为( )
在边长是2的正方体ABCD-A1B1C1D1中,E,F分别为AB,A1C的中点.应用空间向量方法求解下列问题.
如图,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
已知正方体ABCD——A1B1C1D1中,点E为DD1的中点,求证平面A1BD∥平面CB1D1
在棱长为2的正方体ABCD-A1B2C3D4,点E、F分别是棱AB,CD的中点,则点C1到平面B1EF的距离是多少
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1、DB的中点.