(2013•四川)如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/10 20:39:02
(2013•四川)如图,在三棱柱ABC-A1B1C中,侧棱AA1⊥底面ABC,AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.(锥体体积公式:V=
Sh
(Ⅰ)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,求三棱锥A1-QC1D的体积.(锥体体积公式:V=
1 |
3 |
(Ⅰ)在平面ABC内,过点P作直线l和BC平行,由于直线l不在平面A1BC内,而BC在平面A1BC内,
故直线l与平面A1BC平行.
三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD⊥BC,∴l⊥AD.
再由AA1⊥底面ABC,可得 AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1 .
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,
∵侧棱AA1⊥底面ABC,故三棱柱ABC-A1B1C为直三棱柱,
故DE⊥平面AA1C1C.
直角三角形ACD中,∵AC=2,∠CAD=60°,∴AD=AC•cos60°=1,∴DE=AD•sin60°=
3
2.
∵S△QA1C1=
1
2•A1C1•AA1=
1
2×2×1=1,
∴三棱锥A1-QC1D的体积 VA1−QC1D=VD−QA1C1=
1
3•S△QA1C1•DE=
1
3×1×
3
2=
3
6.
故直线l与平面A1BC平行.
三角形ABC中,∵AB=AC=2AA1=2,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,∴AD⊥BC,∴l⊥AD.
再由AA1⊥底面ABC,可得 AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1 .
(Ⅱ)设(Ⅰ)中的直线l交AC于点Q,过点D作DE⊥AC,
∵侧棱AA1⊥底面ABC,故三棱柱ABC-A1B1C为直三棱柱,
故DE⊥平面AA1C1C.
直角三角形ACD中,∵AC=2,∠CAD=60°,∴AD=AC•cos60°=1,∴DE=AD•sin60°=
3
2.
∵S△QA1C1=
1
2•A1C1•AA1=
1
2×2×1=1,
∴三棱锥A1-QC1D的体积 VA1−QC1D=VD−QA1C1=
1
3•S△QA1C1•DE=
1
3×1×
3
2=
3
6.
(2014•海淀区二模)如图,在三棱柱ABC-A1B1C中,AA1⊥底面ABC,AB⊥AC,AC=AA1,E、F分别是棱
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2.
在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3
如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=2,E是BC中点.(II)若棱AA1上存在
(2014•江西二模)如图,在直三棱柱ABC-A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
如图,三棱柱ABC–A1B1C1中,底面三角形ABC是正三角形,AA1=AB=2,平面ACC1A1⊥平面ABC,∠A1A
如图,三棱柱ABC—A1B1C1的侧棱AA1垂直于底面ABC,AA1=2,AC=BC=1,∠BCA=90°
如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,
在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,底面是以角ABC为直角的等腰三角形,AC=2a,BB1=3a,D
如图 已知正三棱柱ABC-A1B1C1中 AB=根号下2AA1
直三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,且AB⊥AC,AB=AC=2,AA1=4,M是侧棱CC1上的
如图,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC,M,N分别是棱CC1,AB的中点