解微分方程y'+2xy=e^(-x^2)满足初始条件y(0)=2的特解
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 07:02:45
解微分方程y'+2xy=e^(-x^2)满足初始条件y(0)=2的特解
y'+2xy=xe^(-x)
y'+2xy=0
y'=-2xy
dy/y=-2xdx
y=C0e^(-x^2)
设y=c0(x)e^(-x^2)
C0'e^(-x^2)=xe^(-x)
dC0=xe^(x^2-x)dx
∫xe^(x^2-x)dx=(1/2)∫(2x)e^(x^2-x)dx=(1/2)∫e^(x^2)d(x^2)/e^x=(1/2)∫de^(x^2)/e^x
=(1/2)∫d(e^x^2)/(e^(x^2))^(1/2)
=(e^x^2)^(1/2) +C1
dC0=d(e^(x^2))^(1/2)
C0(x)=(e^(x^2))^(1/2)+C1
y=(e^x^2)^(1/2-1)+C1e^(-x^2)
=e^(-x)+C1e^(-x^2)
y'+2xy=0
y'=-2xy
dy/y=-2xdx
y=C0e^(-x^2)
设y=c0(x)e^(-x^2)
C0'e^(-x^2)=xe^(-x)
dC0=xe^(x^2-x)dx
∫xe^(x^2-x)dx=(1/2)∫(2x)e^(x^2-x)dx=(1/2)∫e^(x^2)d(x^2)/e^x=(1/2)∫de^(x^2)/e^x
=(1/2)∫d(e^x^2)/(e^(x^2))^(1/2)
=(e^x^2)^(1/2) +C1
dC0=d(e^(x^2))^(1/2)
C0(x)=(e^(x^2))^(1/2)+C1
y=(e^x^2)^(1/2-1)+C1e^(-x^2)
=e^(-x)+C1e^(-x^2)
求微分方程y'+2y=e^x满足初始条件y(0)=1/3的特解
求微分方程(y^2+xy^2)dx-(x^2+yx^2)dy=0,满足初始条件(y/x=1)=-1的特解
求微分方程x^2y撇+xy=y^3满足初始条件y(1)=1的特解
求解微分方程dy/dx=2xy,满足初始条件:x=0,y=1的特解
求微分方程xy’+x+y=0满足初始条件y(1)=0的特解
求微分方程xy'+y+xe^x=0满足初始条件y(1)=0的特解
求微分方程(x^2-1)dy+(2xy-cosx)dx=0满足初始条件y(0)=1的特解
设y=f(x)是微分方程y''+2y'+3y=e^3x满足初始条件(即柯西条件)y(0)=y'(0)=0的特解,求极限l
求微分方程y'=(x^2+1)/(1+tany)满足初始条件y(0)=0的特解
求微分方程dx/y+dy/x=0满足初始条件y(4)=2特解的为?
求下列微分方程满足给定初始条件的特解y''=e的x次幂 y=2 当x=0时 y'=0 当x=0
求微分方程(1-x^2)dy+(2xy-cosx)dx=0满足初始条件y(0)=1的特解