g(x)=ax^2 -2ax +1+b(a≠0,b〈1),在区间[2,3]内最大值为4,最小值为1,设f(x)=g(x)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 21:08:46
g(x)=ax^2 -2ax +1+b(a≠0,b〈1),在区间[2,3]内最大值为4,最小值为1,设f(x)=g(x)/x,求a,b的值
g(x)=ax^2 -2ax +1+b(a≠0,b〈1),在区间[2,3]内最大值为4,最小值为1,设f(x)=g(x)/x.
1、求a,b的值;
2、若f(2^x) - k·2^x ≥0,在x∈[-1,1]内恒成立,求k的范围.
g(x)=ax^2 -2ax +1+b(a≠0,b〈1),在区间[2,3]内最大值为4,最小值为1,设f(x)=g(x)/x.
1、求a,b的值;
2、若f(2^x) - k·2^x ≥0,在x∈[-1,1]内恒成立,求k的范围.
g(x)=ax²-2ax+1+b (a≠0,b0 时,g(x)开口向上,
在区间[2,3]内递增
最大值f(x)max = f(3) = 3a+1+b =4
最小值f(x)min = f(2) = 1+b =1
所以,
a=1
b=0
a
再问:
在区间[2,3]内递增
最大值f(x)max = f(3) = 3a+1+b =4
最小值f(x)min = f(2) = 1+b =1
所以,
a=1
b=0
a
再问:
已知函数g(x)=ax²-2ax+1+b(a不等于0,b>1),在区间[2,3]上有最大值4,最小值1,设f(
已知函数g(x)=ax^2-2ax+1+b(a>0),在区间[2,3]上有最大值4,最小值1,设f(x)=g(x)/x
g(x)=ax^2-2ax+1+b,在区间[2,3]上有最大值4,最小值1,设f(x)=g(x)/x.1)求a,b的值2
已知函数f(x)=ax平方-2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1,设f(x)=x分之g(x).
已知函数g(x)=ax^2-4ax b(a>0)在区间【0,1】上有最大值1和最小值-2,设f(x)=g(x)/x
已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|)
函数,看不懂的题设f(x)=x^2-2ax+a在区间[-1,1]上最小值为g(a),求g(a)的最大值?
已知函数g(x)=ax²-2ax+1+b(a不等于0),在区间[2,3]上有最大值4,最小值1,设f(x)=g
已知函数g(x)=ax²-2ax+1+b(a>0)在区间[0,3]上有最大值4和最小值1设f(x)=g(x)/
设函数f(x)=x^2+2ax+3a-1在区间[-2,4]上的最小值为g(a),求g(a)的表达式
已知f(x)=x^2-ax+a/2(a>0)在区间《0,1》上的最小值为g(a),求g(a)的最大值
若二次函数f(x)=x^2-ax+a/2在区间[0,1]上的最小值为g(a),求g(a)的最大值