数列{an}的前n项和Sn,且Sn=4 an—p(n∈N﹡),p是不为零的常数.1,证明:数列{an}是等比数列.2,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 17:25:10
数列{an}的前n项和Sn,且Sn=4 an—p(n∈N﹡),p是不为零的常数.1,证明:数列{an}是等比数列.2,
1、因为Sn=4an-p
所以Sn-1=4an-1-p
an=sn-sn-1=4(an-an-1)
4an-1=3an
an/an-1=4/3
故{an}为公比等于4/3的等比数列.
2、因为bn+1=an+bn
所以bn+1-bn=an
bn-bn-1=an-1
.
b2-b1=a1
a1+a2+...+an=bn+1-b1
又因b1=2,p=3
所以sn=bn+1-2
又因sn=4an-3
所以bn+1-2=4an-3
4an-1=bn+1
bn=4an-1-1
所以 b2=4a1-1
又因 b2=a1+b1=a1+2
4a1-1=a1+2
a1=1
an=(4/3)^(n-1)
故bn=4*(4/3)^(n-2)-1
所以Sn-1=4an-1-p
an=sn-sn-1=4(an-an-1)
4an-1=3an
an/an-1=4/3
故{an}为公比等于4/3的等比数列.
2、因为bn+1=an+bn
所以bn+1-bn=an
bn-bn-1=an-1
.
b2-b1=a1
a1+a2+...+an=bn+1-b1
又因b1=2,p=3
所以sn=bn+1-2
又因sn=4an-3
所以bn+1-2=4an-3
4an-1=bn+1
bn=4an-1-1
所以 b2=4a1-1
又因 b2=a1+b1=a1+2
4a1-1=a1+2
a1=1
an=(4/3)^(n-1)
故bn=4*(4/3)^(n-2)-1
设数列{an}的前n项和为Sn,且Sn=4an-p,其中p是不为零的常数.
已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列
数列{an}前n项和为Sn,且an+Sn=-2n-1 证明{an+2}是等比数列
数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列
等比数列证明题设数列an的前n项和为Sn,且Sn=4an-3怎么证明数列an是等比数列
数列{an}前n项和为Sn,且Sn=n-5an-85,证明{an-1}是等比数列
数列{an}的前n项和为Sn=npan(n∈N*),且a1≠a2.(1)求常数p的值(2)证明:数列{an}是等差数列.
等比数列的证明方式数列An的前n项和为Sn,A1=1,A(n+1)=2Sn+1,证明数列An是等比数列
数列{an}前n项和Sn=npa[n](n是正整数),且a1不等于a2,(1)求p的值(2)证明{an}为等差数列
数列{an}的前n项和为Sn,Sn=2an-3n(n∈N)(1)证明数列an+3是等比数列,(2)求数列an的通项公式
已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*,证明{an-1}为等比数列
设数列{an}的前n项和为Sn,Sn=n-an,n属于自然数.求:证明:数列{an-1}是等比数列