已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 15:12:02
已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(1)∵抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1≠x2,
∴△=(1-2a)2-4a2>0.a< 14.
又∵a≠0,
∴x1•x2=a2>0,
即x1、x2必同号.
而x1+x2=-(1-2a)=2a-1< 2/4-1 =- 1/2<0,
∴x1、x2必同为负数,
∴点A(x1,0),B(x2,0)都在原点的左侧;.
我想知道求x1+x2=-(1-2a)=2a-1< 2/4-1=- 1/2<0,
怎么得到的?
特别是后边的2/4-1=-1/2
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(1)∵抛物线与x轴交于A(x1,0),B(x2,0)两点,且x1≠x2,
∴△=(1-2a)2-4a2>0.a< 14.
又∵a≠0,
∴x1•x2=a2>0,
即x1、x2必同号.
而x1+x2=-(1-2a)=2a-1< 2/4-1 =- 1/2<0,
∴x1、x2必同为负数,
∴点A(x1,0),B(x2,0)都在原点的左侧;.
我想知道求x1+x2=-(1-2a)=2a-1< 2/4-1=- 1/2<0,
怎么得到的?
特别是后边的2/4-1=-1/2
抛物线y=ax^2+bx+c若与x轴有交点x1,x2则:
x1+x2=-b/a这是根与系数的关系,也就是韦达定理,类似于二次方程中;
上面由∴△=(1-2a)2-4a2>0得到的是:1-4a>0,因此a
再问: 明白了、x1+x2
x1+x2=-b/a这是根与系数的关系,也就是韦达定理,类似于二次方程中;
上面由∴△=(1-2a)2-4a2>0得到的是:1-4a>0,因此a
再问: 明白了、x1+x2
已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
已知抛物线y=-x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2
解二次函数已知抛物线y=-√3x2-2√3(a-1)x-√3(a2-2a)与x轴交与点A(x1,0)B(x2,0)且x1
(2004•徐州)已知抛物线y=(1-m)x2+4x-3开口向下,与x轴交于A(x1,0)和B(x2,0)两点,其中x1
已知抛物线y=x2+(1-2k)x+k2(k不等于0)与x轴交于两点A(X1,0),B(x2,0)(x1≠X2),顶点c
已知抛物线y=-2/3x²+bx+c与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴交于C,且x1,
已知y=ax^2-(a-5)x-5(a〉0)与x轴交于两点:A(X1,0)B(X2,0),(X1〈X2)交y轴于C,且O
开口向下的抛物线y=ax^2+bx+c与x轴交于A(x1,0)B(x2,0)两点(x1<x2),与y轴交于点C(0,5)
已知抛物线y=ax^2 +bx+c 与X轴交于A(X1,0) B(X2,0) X1小于X2,与Y轴交于点C 抛物线顶点为
如图,已知抛物线y=ax2+bx+c(a≠0)的图像与x轴交于两点A(x1,0),B(x2,0)(x1
已知抛物线y=x2+kx+2k-4,若抛物线与x轴交于A(x1,0),B(x2,0),与y轴交于点C(A为定点且点A在B
已知抛物线y=x平方-(2m+4)x+m平方-4(m<1)交x轴于A(x1,0)B(x2,0)x1<0<x2交y轴于C,