抛物线y=ax^2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点D
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 08:07:02
抛物线y=ax^2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点D
(1)直接写出抛物线的对称轴及抛物线与x轴的另一个交点A的坐标.
(2)以AD位置见的圆经过点C
①求抛物线的解析式
②点E在抛物线的对称轴上,点F在抛物线上,且B,A,F,E点为顶点的四边形为平行四边形,求点F的坐标.
(1)直接写出抛物线的对称轴及抛物线与x轴的另一个交点A的坐标.
(2)以AD位置见的圆经过点C
①求抛物线的解析式
②点E在抛物线的对称轴上,点F在抛物线上,且B,A,F,E点为顶点的四边形为平行四边形,求点F的坐标.
1 对称轴x=b/[-2a] 所以x对=-2a/-2a=1
代入B[-1,0]可以得到b=3a
所以 y=ax^2-2ax-3a----1式
令y=0 可以得到0=ax^2-2ax-3a 同时约去a就有[x-3][x+1]=0
所以另一个交代为(3,0)
2 令x=0 得到C(0,-3a) 代入x=1 得到D(1,-4a)
那么AD这个园的圆心设为M M=(2.-2a)
由AM=MC【都是园半径】可以得到a=1
所以y=x^2-2x-3
3【说真的有点拿不准】 因为E在对称轴上 所以画图就可以看到F必须是D点 所以很明显F就是D点(1,-4)
代入B[-1,0]可以得到b=3a
所以 y=ax^2-2ax-3a----1式
令y=0 可以得到0=ax^2-2ax-3a 同时约去a就有[x-3][x+1]=0
所以另一个交代为(3,0)
2 令x=0 得到C(0,-3a) 代入x=1 得到D(1,-4a)
那么AD这个园的圆心设为M M=(2.-2a)
由AM=MC【都是园半径】可以得到a=1
所以y=x^2-2x-3
3【说真的有点拿不准】 因为E在对称轴上 所以画图就可以看到F必须是D点 所以很明显F就是D点(1,-4)
已知抛物线y=ax的平方-2ax-b (a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C,顶点为D.
已知抛物线y=-ax^2 +2ax +b与X轴的一个交点为A(-1,0),与Y轴的正半轴交于点C.
已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴负半轴交于点C,顶点为D.
抛物线y=ax^2+4ax+1与x轴的一个交点为A(-1,0),抛物线与x轴的另一个交点为B,D是抛物线与y轴的交点,C
已知抛物线y=ax的平方-2ax-b (a>0)与x轴的一个交点为B(-1,0)如题
如图,抛物线y=ax^2+bx+4与x轴的两个交点分别为A(-4,0)、B(2,0),与y轴交于点C,顶点为D.E(1,
如图,抛物线y=ax^2+bx+c与x轴交于A,D两点,与y轴交于点c,抛物线的顶点b在第一象限,若点A的坐标为(1,0
一道初中二次函数题抛物线y=ax^2+bx+4与x轴的两个交点分别为A(-4,0)B(2,0)与Y轴交于点C,顶点为D,
初中二次函数题抛物线y=ax^2+bx+4与x轴的两个交点分别为A(-4,0)B(2,0)与Y轴交于点C,顶点为D,E(
如图,抛物线Y=ax的平方+bx+4与x轴的两个交点分别为A(-4,0)B(2,0),与y轴交于点C,顶点为DE(1,2
如图,已知抛物线y=ax2-2ax-b(a>0)与x轴的一个交点为B(-1,0),与y轴的负半轴交于点C