作业帮 > 数学 > 作业

求一张人教版初二上册数学难题精选

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 08:22:17
求一张人教版初二上册数学难题精选
求一张人教版初二上册数学难题精选
2008-2009学年度第二学期八年级数学期末考试试题
(本卷共四个大题 满分150分 考试时间120分钟)
一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.
1、在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于( )
A、第一象限 B、第二象限 C、第三象限  D、第四象限
2、在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是( )
A、关于x轴对称 B、关于y轴对称
C、关于原点对称 D、将点A向x轴负方向平移一个单位得点A´
3、下列说法中错误的是 (  )
A、两条对角线互相平分的四边形是平行四边形;B、两条对角线相等的四边形是矩形;
C、两条对角线互相垂直的矩形是正方形; D、两条对角线相等的菱形是正方形
4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教练对他的10次训练成绩进行统计分析,若要判断他的成绩是否稳定,则教练需要知道刘翔这10次成绩的 ( )
A、平均数 B、中位数 C、众数 D、方差
5、点P(3,2)关于 轴的对称点 的坐标是 ( )
A、(3,-2) B、(-3,2) C、(-3,-2) D、(3,2)
6、以三角形的三个顶点及三边中点为顶点的平行四边形共有:( )
A、1个 B、2个 C、3个 D、4个
7、如图,已知 、 是 的 边上的两点,且 ,则 的大小为( )
A、 B、 C、 D、
8、如图,在□ABCD的面积是12,点E,F在AC上,且AE=EF=FC,则△BEF的面积为 (  )
A、6     B、4     C、3     D、2
(第7题) (第8题) (第9题)
9、如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数 的图象上,若点A的坐标为 (-2,-2),则k的值为( )
A.4 B.-4 \x09 C.8\x09 D.—8
10、如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:
①EC=2DG;② ;③ ; ④图中有8个等腰三角形.其中正确的是( )
A、①③\x09\x09B、②④\x09\x09C、①④\x09\x09D、②③
二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上.
11、若分式 的值为零,则x的值是 .
12、已知1纳米 米,一个纳米粒子的直径是35纳米,这一直径可用科学计数法表示为 _______________米.
13、如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,AD与BC相交于点E,那么图中全等的三角形共有 对.

(第13题) (第14题) (第17题)
14、如图, ,要使 ,则需要补充一个条件,这个条件可以是 .
15、已知 与 成正比例,当 时, ;那么当 时, .
16、已知样本x, 99,100,101,y的平均数为100,方差是2,则x= ,y= .
17、如图,已知函数 和 的图象交于点P,则二元一次方程组 的解是 .
18、如图,将直角三角板EFG的直角顶点E放置在平行四边形ABCD内,顶点F、G分别在AD、BC上,若 ,则 =________.
19、在数学活动课上,小明做了一个梯形纸板,测得一底边长为7 cm,高为12 cm,两腰长分别为15 cm和20 cm,则该梯形纸板的另一底边长为 .
20、如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作 ,PQ交CD与Q,若 ,CQ=5,则正方形ABCD的面积为________
三、解答题(本大题6个小题,每小题10分,共60分)解答时每小题必须给出必要的演算过程或推理步骤.
21、(10分)⑴计算: .
⑵解方程
22、(10分)
⑴数学来源于生活又服务于生活,利用数学中的几何知识可以帮助我们解决许多实际问题.李明准备与朋友合伙经营一个超市,经调查发现他家附近有两个大的居民区A、B,同时又有相交的两条公路,李明想把超市建在到两居民区的距离、到两公路距离分别相等的位置上,绘制了如下的居民区和公路的位置图.聪明的你一定能用所学的数学知识帮助李明在图上确定超市的位置!请用尺规作图确定超市P的位置.(写出已知、求作,作图不写作法,但要求保留作图痕迹.)
⑵如图,O为平行四边形ABCD的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F在直线MN上,且OE=OF.
(1)图中共有几对全等三角形,请把它们都写出;
(2)求证:∠MAE=∠NCF.
23、(10分)化简并求值: ,其中 .
24、(10分)物理兴趣小组20位同学在实验操作中的得分情况如下表:
得分(分)\x0910\x099\x098\x097
人数(人)\x095\x098\x094\x093
问:①求这20位同学实验操作得分的众数、中位数.
②这20位同学实验操作得分的平均分是多少?
③将此次操作得分按人数制成如图所示的扇形统计图.扇形①的圆心角度数是多少?
25、(10分) 已知:如图,菱形ABCD中, E,F分别是CB,CD上的点,且BE=DF.
(1)求证:AE=AF.
(2)若∠B=60°,点E,F分别为BC和CD的中点,求证:△AEF为等边三角形.

26、(10分)元旦前夕,我市为美化市容,开展城市绿化活动,要种植一种新品种树苗.甲、乙两处育苗基地均以每株4元的价格出售这种树苗,并对一次性购买该种树苗不低于1000株的用户均实行优惠:甲处的优惠政策是每株树苗按原价的7.5折出售;乙处的优惠政策是免收所购树苗中200株的费用,其余树苗按原价的9折出售.
(1)规定购买该种树苗只能在甲、乙两处中的一处购买,设一次性购买x(x≥1000且x为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y1元,写出y1与x之间的函数关系式,若在乙处育苗基地购买,所花的费用为y2元,写出y2与x之间的函数关系式(两个关系式均不要求写出自变量x的取值范围);
(2)若在甲、乙两处分别一次性购买1400株该种树苗,在哪一处购买所花的费用少?为什么?
(3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树,两批树苗共2500株,购买2500株该树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?
四、解答题(本大题2个小题,每小题10分,共20分)解答时每小题必须给出必要的演算过程或推理步骤.
27、(10分)如图正方形ABCD中,E为AD边上的中点,过A作AF⊥BE,交CD边于F,M是AD边上一点,且有BM=DM+CD.
⑴求证:点F是CD边的中点;
⑵求证:∠MBC=2∠ABE.
28、(10分)如图,帆船 和帆船 在太湖湖面上训练, 为湖面上的一个定点,教练船静候于 点.训练时要求 两船始终关于 点对称.以 为原点,建立如图所示的坐标系, 轴, 轴的正方向分别表示正东、正北方向.设 两船可近似看成在双曲线 上运动.湖面风平浪静,双帆远影优美.训练中当教练船与 两船恰好在直线 上时,三船同时发现湖面上有一遇险的 船,此时教练船测得 船在东南 方向上, 船测得 与 的夹角为 , 船也同时测得 船的位置(假设 船位置不再改变, 三船可分别用 三点表示).
(1)发现 船时, 三船所在位置的坐标分别为 和 ;
(2)发现 船,三船立即停止训练,并分别从 三点出发船沿最短路线同时前往救援,设 两船的速度相等,教练船与 船的速度之比为 ,问教练船是否最先赶到?请说明理由.

参考答案
一、选择题
1.C 2. B 3.B 4.D 5.A 6.C 7.A 8.D 9.D 10.D
二、填空题
11、 12、 13、4\x09 14、答案不唯一 .
15、7 16、98,102 17、
18、80 19、32cm或14c 20、81
三、解答题
21、⑴1 ⑵x=1,经过检验后是增根,原方程无解
22、⑴已知:相交直线 、 ,点A、点B.
求作:点P,使点P到直线 、 的距离相等,且PA=PB.
⑵(1)共有4对:ΔABC≌ΔCDA; ΔAMO≌ΔCNO;ΔAEO≌ΔCFO;
ΔAEM≌ΔCFN;(2)通过证明ΔAOE≌ΔCOF可得∠EAO=∠FCO;由∠MAO=∠OCN,可推出∠MAE=∠NCF.
23、

 
 
当 时,原式= .
24、(1) 1、众数为9,中位数为9
(2)平均分= =8.75分
⑶圆心角的度数=(1-25%-40%-20%)×360°=54°
25、证明:(1) ∵四边形ABCD是菱形,
∴AB=AD, ,
∵BE=DF
∴ ≌
∴AE=AF
(2) 连接AC
∵AB=BC,
∴ 是等边三角形,
E是BC的中点
∴AE⊥BC,
∴ ,
同理


又∵ AE=AF
∴ 是等边三角形.
26、(1)y1=0.75×4x=3x,y2=0.9×4(x-200)=3.6x-720;
(2)在甲处育苗基地购买种树苗所花的费用少.
当x=1400时,y1=3x=4200,y2=3.6x-720=4320.因为y1<y2,所以在甲处购买;
(3)设在乙处购买a株该种树苗,所花钱数为W元,W=3(2500-a)+3.6a-720=0.6a+6780.
因为 所以1000≤a≤1500,且a为整数.因为0.6>0,所以W随a的增大而增大.所以a=1000时,W最小=7380.在甲处购买的树苗=2500-1000=1500.
答:至少需要花费7380元,应在甲处购买该种树苗1500株,在乙处购买该种树苗1000株.
四、解答题
27.证明:⑴∵正方形ABCD中AD=AB,∠ADC=∠BAD=90°
∴∠1+∠2=90°
∵AF⊥BE ∴∠3+∠2=90°
∴∠1=∠3
在△ADF和△BAE中

∴△ADF≌△BAE ∴DF=AE
∵AE=DE= AD AD=AB
∴DF=CF= AB ∴点F是CD边的中点
⑵连结BF,并延长交AD的延长线于点N
∵正方形ABCD中AD∥BC ∴∠4=∠N
在△NDF和△BCF中
∴△NDF≌△BCF ∴DN=CB
∵正方形ABCD中AD=BC=CD ∴DN=CD
∵BM=DM+CD ∴BM=DM+DN=MN
∴∠5=∠N=∠4 即∠MBC=2∠4
在△ADF和△BCF中
∴△ADF≌△BCF ∴∠1=∠4
∵∠1=∠3 ∴∠1=∠4
∴∠MBC=2∠3=2∠ABE
(注:只要方法正确按同等情况给分)
28、(1) ; ; .
(2)作 轴于 ,连 和 .
∵A的坐标为 , , .
∵C在 的东南 方向上, .
∵AO=BO, .又∵∠BAC=60°
为正三角形. .

由条件设:教练船的速度为 , 两船的速度均为4 .
则教练船所用的时间为: , 两船所用的时间均为: .
∵ , , .
教练船没有最先赶到.