如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 13:02:43
如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D是BC的中点,BE,CF交于点M.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由;
(3)如果CM=4,FM=5,求BE的长度.
(1)如果AB=AC,求证:△DEF是等边三角形;
(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由;
(3)如果CM=4,FM=5,求BE的长度.
(1)证明:∵∠A=60°,AB=AC,
∴△ABC是等边三角形,
∵BE⊥AC,垂足为E,CF⊥AB,垂足为F,
∴E、F分别是AC、AB边的中点,
又∵点D是BC的中点,
EF=
1
2BC,DE=
1
2AB,DF=
1
2AC,
∴EF=ED=DF,
∴△DEF是等边三角形;
(2)△DEF是等边三角形.
理由如下:∵∠A=60°,BE⊥AC,CF⊥AB,
∴∠ABE=∠ACF=90°-60°=30°,
在△ABC中,∠BCF+∠CBE=180°-60°-30°×2=60°,
∵点D是BC的中点,BE⊥AC,CF⊥AB,
∴DE=DF=BD=CD,
∴∠BDF=2∠BCF,∠CDE=2∠CBE,
∴∠BDF+∠CDE=2(∠BCF+∠CBE)=2×60°=120°,
∴∠EDF=60°,
∴△DEF是等边三角形;
(3)∵∠A=60°,BE⊥AC,CF⊥AB,
∴∠ABE=∠ACF=90°-60°=30°,
∴BM=2FM=2×5=10,ME=
1
2CM=
1
2×4=2,
∴BE=BM+ME=10+2=12.
∴△ABC是等边三角形,
∵BE⊥AC,垂足为E,CF⊥AB,垂足为F,
∴E、F分别是AC、AB边的中点,
又∵点D是BC的中点,
EF=
1
2BC,DE=
1
2AB,DF=
1
2AC,
∴EF=ED=DF,
∴△DEF是等边三角形;
(2)△DEF是等边三角形.
理由如下:∵∠A=60°,BE⊥AC,CF⊥AB,
∴∠ABE=∠ACF=90°-60°=30°,
在△ABC中,∠BCF+∠CBE=180°-60°-30°×2=60°,
∵点D是BC的中点,BE⊥AC,CF⊥AB,
∴DE=DF=BD=CD,
∴∠BDF=2∠BCF,∠CDE=2∠CBE,
∴∠BDF+∠CDE=2(∠BCF+∠CBE)=2×60°=120°,
∴∠EDF=60°,
∴△DEF是等边三角形;
(3)∵∠A=60°,BE⊥AC,CF⊥AB,
∴∠ABE=∠ACF=90°-60°=30°,
∴BM=2FM=2×5=10,ME=
1
2CM=
1
2×4=2,
∴BE=BM+ME=10+2=12.
如图,已知,在△ABC中,∠A=60°,AB=AC,BE⊥AC于E,CF⊥AB于F,点D为BC的中点,BE,CF交于点M
如图,已知BE⊥AC,垂足为E,CF⊥AB,垂足为F,BE与CF交于点D,且BD=CD求证:点D在∠A的平分线上.证AE
已知,在三角形ABC中,角A=60度,AB=AC,BE垂直于AC于E,CF垂直于AB于F,点D为BC的中点,BE、CF交
如图,已知,在三角形ABC中,角A=60,AB=AC,BE垂直于AC,CF垂直于AB,点D为BC中点,BE,CF交于点M
如图,在△ABC中,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE+CF>EF.
如图,在△ABC中,点D为BC的中点,点E为AB上一点,DF⊥DE交AC于F,求证:BE+CF>EF
△ABC在中∠A=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF//AB交AD延长线与点F
如图,在△abc中,∠abc=45°,cd⊥ab,be⊥ac,垂足分别为点d,e,f为bc的中点,be与df、dc分别交
如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,BE=CF.AD平分∠BAC.求证:AD平分∠ED
如图,在三角形ABC中,D是BC的中点,DE垂直于AB,DF垂直于AC,垂足分别是E,F,BE=CF.
如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF,求证:AD⊥BC.
如图,三角形ABC中,∠B+∠C=2∠A,BE⊥AC,CF⊥AB,垂足分别为E、F,又D是BC 的中点,试判断△DEF