如图Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC相交于D点,E为BC的中点,连接DE、OC.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 20:13:12
如图Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC相交于D点,E为BC的中点,连接DE、OC.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
(2)若tan∠ACB=4/3,求sin∠ACO的值.
如图Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC相交于D点,E为BC的中点,连接DE、OC.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
(2)若tan∠ACB=4/3,求sin∠ACO的值.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
(2)若tan∠ACB=4/3,求sin∠ACO的值.
如图Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC相交于D点,E为BC的中点,连接DE、OC.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
(2)若tan∠ACB=4/3,求sin∠ACO的值.
(1)判断直线DE与⊙O的位置关系,证明你的结论;
连接OE,OD,BD.
可得:角BDA=90,则DE=1/2BC=BE,
OB=OD,OE=OE
故,三角形OBE全等于三角形ODE.
即角ODE=角OBE=90
所以,DE与圆O相切.
(2)若tan∠ACB=4/3,求sin∠ACO的值.
设AB=4K,BC=3K,则可得AC=5K.
即sinBAC=3K/5K=3/5.
过O作OF垂直于AC.则有OF=OAsinBAC=2k*3/5=1.2k.
又OC^2=OB^2+BC^2=4K^2+9K^2=13K^2
OC=根号13 K.
故sinACO=OF/OC=1.2K/根号13 K=(6/5)/根号13=(6/65)根号13.
连接OE,OD,BD.
可得:角BDA=90,则DE=1/2BC=BE,
OB=OD,OE=OE
故,三角形OBE全等于三角形ODE.
即角ODE=角OBE=90
所以,DE与圆O相切.
(2)若tan∠ACB=4/3,求sin∠ACO的值.
设AB=4K,BC=3K,则可得AC=5K.
即sinBAC=3K/5K=3/5.
过O作OF垂直于AC.则有OF=OAsinBAC=2k*3/5=1.2k.
又OC^2=OB^2+BC^2=4K^2+9K^2=13K^2
OC=根号13 K.
故sinACO=OF/OC=1.2K/根号13 K=(6/5)/根号13=(6/65)根号13.
(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE
如图,在RT△ABC中,∠ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE
如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,连接DE、OE.
如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC
如图8,RTΔABC中,∠ABC=90°,以AB为直径作⊙O交AC边于点D,E是边BC中点,连接DE.求证:直线DE是⊙
如图,Rt△ABC中,∠ABC=90°,AB=BC=4,以AB为直径作圆O交AC边于点D,E是边BC的中点,连结DE.
如图,在Rt三角形ABC中,角ABC=90°,以AB为直径作圆O交AC边于点D,E是边BC的中点,连接DE.
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
如图,Rt△ABC中,角ACB=90°.以BC为直径作圆心O交AB于D.E为AC中点.连接DE.求证DE是圆心O的切线
已知:如图,Rt△ABC中,点D在斜边AB上,以AD为直径的⊙O与BC相切于点E,连接DE
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E,求证:DE=12BC.
圆的切线证明题.Rt△ABC,∠ABC=90°,以AB为直径的⊙O交AC于点E,点D是BC中点,连DE.求证:DE与⊙O