设f(x)=g(x)/x ,x≠0;f(x)=0 ,x=0且g(0)=g'(0)=0,g"(x)=3.求f'(0)
已知函数f(x)=lnx,g(x)=a/x(a>0),设F(x)=f(x)+g(x) 求F(x)的单调区间
已知对任意实数x,有f(-x)= - f(x),g(-x)= - g(-x),且x>0时,f(x)的导数>0,g(x)的
设f(x),g(x)都是(-∞,+∞)上的可导函数,且f'(x)=g(x),g'(x)=f(x),f(0)=1,g(0)
已知二次函数f(x)满足f(0)=0,且f(x+1)=f(x)+x+1,g(x)=2f(-x)+x 求f(x),f[g(
已知函数f(x)的定义域是【0,3】,设g(x)=f(2x)-f(x+2).求g(x)的解析式和定义域
设f(X)具有2阶连续导数,且f(a)=0,g(x)=f(x)/x-a,x不等于a,g(x)=f'(a),x=a,求g'
设g(x)在x=0处二阶可导,且g(0)=0,f(x)=g(x),x≠0,f(x)=a,x=0;确定试a值,使函数f(x
f(x-y)=f(x)g(y) - g(x)f(y) 且f(-2)=f(1)不等于0 ,则g(1)+g(-1)=?
设f'(0),g'(0)存在,f(0)=g(0),求lim(x趋近于0):(f(x)-g(x))/x
设函数f(X)定义在(0,+∞)上,f(1)=0,导数f'(x)=1/x,g(x)=f(x)+f'(x) .
g(x)=f(x)/x x≠0 g(x)=f′(0) x=0 知道f(x)有二阶连续导数 f(0)=0 证g可导且导函数
已知f(x),g(x)都是定义在R上的函数 g(x)≠0 f'(x)g(x)<f(x)g'(x),f(x)=a^x g(