作业帮 > 数学 > 作业

以知A,B,C都是正数,求证 [A+B][B+C][C+A]>=8ABC

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 17:16:07
以知A,B,C都是正数,求证 [A+B][B+C][C+A]>=8ABC
以知A,B,C都是正数,求证 [A+B][B+C][C+A]>=8ABC
题目:
已知A、B、C都是正数,求证:(A+B)(B+C)(C+A)≥8ABC.
证明:利用基本不等式,可得:
(A+B)≥2√(AB)
(B+C)≥2√(BC)
(C+A)≥2√(CA)
以上三式相乘,得:
(A+B)(B+C)(C+A)≥2√(AB)×2√(BC)×2√(CA)=8ABC
等号当且仅当A=B=C时成立.
注:基本不等式为:对于正数x、y,有:(√x-√y)²≥0,展开整理即得:
x+y≥2√xy
其中√表示二次根号.