数列An的前n项和为Sn,并且Sn等于n²-4n,设Bn=An÷(2的n次幂),求数列Bn的前n项和
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 05:21:30
数列An的前n项和为Sn,并且Sn等于n²-4n,设Bn=An÷(2的n次幂),求数列Bn的前n项和
因为Sn=n^2-4n,Sn+1=(n+1)^2-4(n+1),两式相减,可得a(n+1)=2n-3,所以an=2n-5
bn=an/2^n=(2n-5)/2^n
Tn=-3/2-1/2^2+1/2^3+3/2^4+.+(2n-5)/2^n
2Tn=-3-1/2+1/2^2+3/2^3+.+(2n-5)/2^(n-1)
2Tn-Tn=-3+2(1/2+1/2^2+1/2^3+...+1/2^(n-1))-(2n-5)/2^n
Tn=-3+2*1/2*(1-1/2^(n-1))/(1-1/2)-(2n-5)/2^n
=-3+2-4/2^n-(2n-5)/2^n
=-1-(2n-1)/2^n
bn=an/2^n=(2n-5)/2^n
Tn=-3/2-1/2^2+1/2^3+3/2^4+.+(2n-5)/2^n
2Tn=-3-1/2+1/2^2+3/2^3+.+(2n-5)/2^(n-1)
2Tn-Tn=-3+2(1/2+1/2^2+1/2^3+...+1/2^(n-1))-(2n-5)/2^n
Tn=-3+2*1/2*(1-1/2^(n-1))/(1-1/2)-(2n-5)/2^n
=-3+2-4/2^n-(2n-5)/2^n
=-1-(2n-1)/2^n
设等差数列{an}的前 n项和为Sn,且 Sn=(an+1)^/2(n属于N*)若bn=(-1)nSn,求数列{bn}的
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)
设数列{an}的前n项和为Sn,且sn=n*n-4n+4,设Bn=An/2的n次方,则数列{Bn}的前n项和Tn为?
已知数列{an},前n项和Sn=2n-n^2,an=log5^bn,其中bn>0,求数列{bn}的前n项和
数列{an}的前n项和为Sn=3an+2 设bn=n 求数列{an·bn}的和Tn
已知数列an的前n项和Sn=n^2,设bn=an/3^n,记数列bn的前n项和为Tn.
已知数列{an}的前n项和sn=n^2,设bn=an/3^n,记数列{bn}的前n项和为Tn
已知数列an的前n项和Sn=n^2,设bn=an/3n,记数列bn的前n项和为Tn
设等差数列{An}的前n项和为Sn,且Sn=(An+1/2)²,n∈N,若bn=(-1)^n*Sn,求数列bn
设数列an的前n项和为Sn,且Sn=n^2-4n+4,bn=an/2^n,求bn的前n项和Tn,能用错位相减么?
已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn
通项an=n,数列(bn)的前n项和为Sn,且Sn+bn=2,求bn的通项公式 令数列Cn=an*bn,求其前n项和Tn