如图已知抛物线y=mx²+nx+p与y=x²+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 02:48:13
如图已知抛物线y=mx²+nx+p与y=x²+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.
⑴求出y=mx²+nx+p的解析式,试猜想出一般形式y=ax²+bx+c关于轴对称的二次函数解析式(不要求证明);
\x052\、如果一次函数y=kx+b(k不等于0)过M点,且与抛物线y=mx²+nx+p,相交于另一点N(i ,j),如果i≠ j,且i²-j²-i+j=0,求k的值.
⑴求出y=mx²+nx+p的解析式,试猜想出一般形式y=ax²+bx+c关于轴对称的二次函数解析式(不要求证明);
\x052\、如果一次函数y=kx+b(k不等于0)过M点,且与抛物线y=mx²+nx+p,相交于另一点N(i ,j),如果i≠ j,且i²-j²-i+j=0,求k的值.
1、y=x²+6x+5的顶点坐标(-3,-4)与Y轴的交点(0,5)
抛物线y=mx²+nx+p与y=x²+6x+5关于y轴对称
抛物线y=mx²+nx+p与Y轴的交点(0,5)顶点坐标(-3,-4)
所以抛物线y=mx²+nx+p的解析式为y=x²-6x+5
猜想一般形式y=ax²+bx+c关于Y轴对称的二次函数解析式y=ax²-bx+c
2、i²-j²-i+j=0
(i+j)(i-j)-(i-j)=0
(i-j)(i+j-1)=0
i≠ j
所以i+j-1=0 (1)
一次函数y=kx+b(k不等于0)过M点可得b=5即y=kx+5
一次函数y=kx+5(k不等于0)与抛物线y=mx²+nx+p,相交于另一点N(i ,j),
所以j=ki+5 (2)
j=i²-6i+5 (3)
(3)-(2)得
i²-6i-ki=0
i(i-6-k)=0
得i=6+k (4)
(2)代入(1)得ki+i+4=0 (5)
(4)代入(5)得k(6+k)+6+k+4=0
解得k1=-2 k2=-5
抛物线y=mx²+nx+p与y=x²+6x+5关于y轴对称
抛物线y=mx²+nx+p与Y轴的交点(0,5)顶点坐标(-3,-4)
所以抛物线y=mx²+nx+p的解析式为y=x²-6x+5
猜想一般形式y=ax²+bx+c关于Y轴对称的二次函数解析式y=ax²-bx+c
2、i²-j²-i+j=0
(i+j)(i-j)-(i-j)=0
(i-j)(i+j-1)=0
i≠ j
所以i+j-1=0 (1)
一次函数y=kx+b(k不等于0)过M点可得b=5即y=kx+5
一次函数y=kx+5(k不等于0)与抛物线y=mx²+nx+p,相交于另一点N(i ,j),
所以j=ki+5 (2)
j=i²-6i+5 (3)
(3)-(2)得
i²-6i-ki=0
i(i-6-k)=0
得i=6+k (4)
(2)代入(1)得ki+i+4=0 (5)
(4)代入(5)得k(6+k)+6+k+4=0
解得k1=-2 k2=-5
如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.求出y=mx2
如图,已知抛物线y1=ax²+bx+c与抛物线y2=x²+6x+5关于y轴对称,并与y轴交于点M,与
如图 抛物线y=-x2+2x+3与x轴交于A,B 两点,与 y轴交于点C,对称轴与抛物线交于点P,与直线BC 交于点M,
如图,已知抛物线y=x²-6x+9的顶点为点P,与 y轴交于点B,一经过点B的直线y=-x+b与该抛物线交于点
如图,抛物线y=mx²-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点,点M为抛物线的顶点
已知抛物线y1=ax的平方+c与x轴交于点A,B,与y轴交于点C.抛物线y2与抛物线y1关于x轴对称,与y轴交于点D,若
急求】如图,已知抛物线y=-0.5x²+x+4与y轴交于点C,与x轴交于A,B
如图,抛物线Y=X²-bx-5与X轴交于A,B两点与Y轴交于C,点c与点F关于抛物线的对称轴对称,直线AF交Y
如图,已知抛物线y=x²+3x-4与x轴交于A,B两点,与y轴交于C点,直线y=2x+2与抛物线交于
如图,已知直线y=1/2x+1与y轴交于点A,与x轴交于点D,抛物线y=1/2x²+bx+c与直线交于A,E两
如图抛物线y=-1/2x²+1/2x+6与x轴交于A,B两点,与y轴交于点C
如图,抛物线y=1/2x²+3/2x-2与x轴交于A、B两点,与y轴交于C点。