作业帮 > 数学 > 作业

求证 x2+y2+z2>=2xycosC+2yzcosA+2zxcosB 其中A,B,C为三角形ABC的内角,x,y,z

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 17:05:04
求证 x2+y2+z2>=2xycosC+2yzcosA+2zxcosB 其中A,B,C为三角形ABC的内角,x,y,z为任意三个实数
x,y,z不是三角形ABC三边
求证 x2+y2+z2>=2xycosC+2yzcosA+2zxcosB 其中A,B,C为三角形ABC的内角,x,y,z
x2+y2+z2≥2xycosC+2yzcosA+2zxcosB
x²+y²+z²-x(2ycosC+2zcosB)-2yzcosA≥0
(x-ycosC-zcosB)²+y²+z²-2yzcosA-(ycosC+zcosB)²≥0
(x-ycosC-zcosB)²+y²sin²C+z²sin²B-yz(2cosA+2cosCcosB)≥0
(x-ycosC-zcosB)²+y²sin²C+z²sin²B-yz[-2cos(B+C)+2cosCcosB]≥0
(x-ycosC-zcosB)²+y²sin²C+z²sin²B-yz[-2cosCcosB+2sinBsinC+2cosCcosB]≥0
(x-ycosC-zcosB)²+y²sin²C+z²sin²B-yz2sinBsinC≥0
(x-ycosC-zcosB)²+(ysinC-zsinB)²≥0
上不等式显然成立,故原命题成立
当x=ycosC+zcosB,ysinC=zsinB时取等号