作业帮 > 数学 > 作业

已知a,b,c 为非零实数,(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2,求证 x/a=y/b=z/

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 06:56:36
已知a,b,c 为非零实数,(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2,求证 x/a=y/b=z/c (2为平方)
已知a,b,c 为非零实数,(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2,求证 x/a=y/b=z/
将两边展开并化简得
(ay)^2+(az)^2+(bx)^2+(bz)^2+(cx)^2+(cy)^2 = 2abxy+2acxz+2bcyz
两边配方得
(ay-bx)^2+(az-cx)^2+(bz-cy)^2=0
又因为平方要大于等于0,所以上面的三个括号内的多项式均为0
即可得到x/a=y/b=z/c.