如图,点F1(-c,0),F2(c,0)分别是椭圆是C:x^2/a^2+y^2/b^2=1(a大于b大于0)的左右焦点,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 10:40:29
如图,点F1(-c,0),F2(c,0)分别是椭圆是C:x^2/a^2+y^2/b^2=1(a大于b大于0)的左右焦点,过F1作x轴
的垂线交椭圆C的上半部分与点P,过点F2作直线PF2的垂线交直线x=a^2/c于点Q.(1)如果点Q的坐标是(4,4),求此时椭圆C的方程
(2)证明;直线PQ与椭圆C只有一个交点
的垂线交椭圆C的上半部分与点P,过点F2作直线PF2的垂线交直线x=a^2/c于点Q.(1)如果点Q的坐标是(4,4),求此时椭圆C的方程
(2)证明;直线PQ与椭圆C只有一个交点
浪费了两个优点,好心痛
(2)设Q( a²/c ,t),过 Q 作椭圆的两条切线QP'、QP″,切点分别为P'、P″( P' 点在x 轴上方) ,连结P'P″,则切点弦P'P″ 的方程为x/c+ ty/b²= 1,显然P'P″ 过焦点F2,
有kF2Q = t/[(a²/c) - c]= tc/b2²,
因此kP'P″·kF2Q = - 1,即F2P' ⊥ F2Q,又因为F2P ⊥ F2Q,
故P 与P' 两点重合,所以直线PQ与椭圆C 只有一个交点
(2)设Q( a²/c ,t),过 Q 作椭圆的两条切线QP'、QP″,切点分别为P'、P″( P' 点在x 轴上方) ,连结P'P″,则切点弦P'P″ 的方程为x/c+ ty/b²= 1,显然P'P″ 过焦点F2,
有kF2Q = t/[(a²/c) - c]= tc/b2²,
因此kP'P″·kF2Q = - 1,即F2P' ⊥ F2Q,又因为F2P ⊥ F2Q,
故P 与P' 两点重合,所以直线PQ与椭圆C 只有一个交点
设F1.F2分别是椭圆x平方除以a平方+y平方除以b平方=1(a大于b大于0)的左,右焦点(1)设椭圆C上的点
椭圆方程为x^2/a^2+y^2/b^2=1 (大于大于)的两个焦点分别为F1,F2,点P在椭圆C上,且PF1垂直于F1
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,F1,F2分别为椭圆C的左右焦点,若椭圆C
设F1、F2分别是椭圆C:x²/a²+y²/b²=1(a>b>0)的左右焦点.
设椭圆C :x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别为F1,F2,P是C上的点PF2⊥F1F2,角
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,直线x=a^2/c[注:c=√(
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1(-C,0),F2(C,0),Q是椭圆外的动
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左右焦点
设F1 F2分别为椭圆C:x^2/a^2+y^2/b^2=1 (a>b>0)的左右两个焦点
设F1,F2分别为椭圆C:X^2/A^2+Y^2/B^2=1(A>B>0)的左右焦点
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左,右焦点,点M是椭圆上一点,且∠F1
设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,过F2的直线l与椭圆C相交于A,B