作业帮 > 数学 > 作业

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:36:50
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(  )
A. (-∞,-1 )∪(2,+∞)
B. (-1,2)
C. (-2,1 )
D. (-∞,-2 )∪(1,+∞)
已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+2x,若f(2-a2)>f(a),则实数a的取值范围是(
∵f(x)=x2+2x=(x+1)2-1在(0,+∞)上单调递增
又∵f(x)是定义在R上的奇函数
根据奇函数的对称区间上的单调性可知,f(x)在(-∞,0)上单调递增
∴f(x)在R上单调递增
∵f(2-a2)>f(a)
∴2-a2>a
解不等式可得,-2<a<1
故选C