一些数学题(初二的)(代数求证)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 15:03:33
一些数学题(初二的)(代数求证)
已知:a+b+c=abc,求证:(1-a²)(1-b²)c+(1-²)(1-c²)a+(1-c²)(1-a²)b=4ab
已知:a+b+c=0(b-c/a+c-a/b+a-b/c)×(c/a-b+a/b-c-b/c-a)的值
求证:2a-b-c/a²-ab-ac-bc+2b-c-a/b²-bc-ab-ac+2c-a-b/c²-ac-bc-ab=0
求证:x,y,z是互不相等的三个实数则(1/x-y)²+(1/y-z)²+(1/z-x)²=(1/x-y+1/y-z+1/z-x)²
求证:a²/(a-b)(a-c)+b²(b-c)(b-a)+c²/(c-a)(c-b)=1
已知:a+b+c=abc,求证:(1-a²)(1-b²)c+(1-²)(1-c²)a+(1-c²)(1-a²)b=4ab
已知:a+b+c=0(b-c/a+c-a/b+a-b/c)×(c/a-b+a/b-c-b/c-a)的值
求证:2a-b-c/a²-ab-ac-bc+2b-c-a/b²-bc-ab-ac+2c-a-b/c²-ac-bc-ab=0
求证:x,y,z是互不相等的三个实数则(1/x-y)²+(1/y-z)²+(1/z-x)²=(1/x-y+1/y-z+1/z-x)²
求证:a²/(a-b)(a-c)+b²(b-c)(b-a)+c²/(c-a)(c-b)=1
①证明:因为a+b+c=abc
左边=c-ca^2-cb^2+a^2b^2c+a-ab^2-ac^2+ab^2c^2+b-a^2b-bc^2+a^2b^2c
=a+b+c+abc(ab+bc+ac)-ca^2-cb^2-ab^2-ac^2-ba^2-bc^2
=abc+(a+b+c)(ab+bc+ac)-ca^2-cb^2-ab^2-ac^2-ba^2-bc^2
=abc+3abc+ca^2+cb^2+ab^2+ac^2+ba^2+bc^2-ca^2-cb^2-ab^2-ac^2-ba^2-bc^2
=4abc=右边
②若a+b+c=0,且(b-c)/a+(c-a)/b+(a-b)/c=0,求(bc+b-c)/b2c2+(ca+c-a)/c2a2+(ab+a-b)/a2b2的值.
将(b-c)/a+(c-a)/b+(a-b)/c=0去分母,并整理,得:
b2c-c2b+c2a-a2c+a2b-b2a=0
a2b-a2c+b2c-b2a+c2a-c2b=0
所以(bc+b-c)/b2c2+(ca+c-a)/c2a2+(ab+a-b)/a2b2
=[a2(bc+b-c)+b2(ca+c-a)+c2(ab+a-b)]/a2b2c2
=[(a2bc+b2ca+c2ab)+(a2b-a2c+b2c-b2a+c2a-c2b)/a2b2c2
=[abc(a+b+c)+(a2b-a2c+b2c-b2a+c2a-c2b)]/a2b2c2
=(a2b-a2c+b2c-b2a+c2a-c2b)/a2b2c2=0
③求证:(2a-b-c/a^2-ab-ac+bc)+(2b-c-a/b^2-bc-ab+ac)+(2c-a-b/c^2-ac-bc+ab)=0
证:左边=(2a-b-c)/(a-c)(a-b)+(2b-c-a)/(b-c)(b-a)+(2c-a-b)/(c-a)(c-b)
=(2a-b-c)/ (a-c)(a-b) -(2b-c-a)/ (b-c)(a-b)+(2c-a-b)/ (a-c)(b-c)
=[(2a-b-c)(b-c)-(2b-c-a)(a-c)+(2c-a-b)(a-b)] / (a-b)(b-c)(a-c)
=0 / (a-b)(b-c)(a-c)=0=右边
④设1/(x-y)=a,1/(y-z)=b,1/(z-x)=c,
1/(x-y)2+1/(y-z)2+1/(z-x)2=a2+b2+c2
[1/(x-y)+1/(y-z)+1/(z-x)]2=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
证明2ab+2bc+2ac等于0即可.
2ab+2bc+2ac=2/(x-y)(y-z)+2/(y-z)(z-x)+2/(x-y)(z-x)
=2(z-x+x-y+y-z)/(z-x)(x-y)(y-z)=0/(z-x)(x-y)(y-z)=0
故 左边=右边
⑤证明:左边= -a^2/(a-b)(c-a)-b^2/(b-c)(a-b)-c^2/(c-a)(b-c)
=[a^2*(c-b)+b^2*(a-c)+c^2(b-a)]/[(a-b)(b-c)(c-a)]
=[(a^2*c-a^2*b+b^2*a-b^2*c+c^2*(b-a)]/[(a-b)(b-c)(c-a)]
=[c(a-b)(a+b)-ab(a-b)-c^2*(a-b)]/[(a-b)(b-c)(c-a)]
=[(a-b)(ca+cb-ab-c^2)]/[(a-b)(b-c)(c-a)]
=[(a-b)(c(a-c)+b(c-a)]/[(a-b)(b-c)(c-a)]
=[(a-b)(c-a)(b-c)]/[(a-b)(b-c)(c-a)]
=1
左边=c-ca^2-cb^2+a^2b^2c+a-ab^2-ac^2+ab^2c^2+b-a^2b-bc^2+a^2b^2c
=a+b+c+abc(ab+bc+ac)-ca^2-cb^2-ab^2-ac^2-ba^2-bc^2
=abc+(a+b+c)(ab+bc+ac)-ca^2-cb^2-ab^2-ac^2-ba^2-bc^2
=abc+3abc+ca^2+cb^2+ab^2+ac^2+ba^2+bc^2-ca^2-cb^2-ab^2-ac^2-ba^2-bc^2
=4abc=右边
②若a+b+c=0,且(b-c)/a+(c-a)/b+(a-b)/c=0,求(bc+b-c)/b2c2+(ca+c-a)/c2a2+(ab+a-b)/a2b2的值.
将(b-c)/a+(c-a)/b+(a-b)/c=0去分母,并整理,得:
b2c-c2b+c2a-a2c+a2b-b2a=0
a2b-a2c+b2c-b2a+c2a-c2b=0
所以(bc+b-c)/b2c2+(ca+c-a)/c2a2+(ab+a-b)/a2b2
=[a2(bc+b-c)+b2(ca+c-a)+c2(ab+a-b)]/a2b2c2
=[(a2bc+b2ca+c2ab)+(a2b-a2c+b2c-b2a+c2a-c2b)/a2b2c2
=[abc(a+b+c)+(a2b-a2c+b2c-b2a+c2a-c2b)]/a2b2c2
=(a2b-a2c+b2c-b2a+c2a-c2b)/a2b2c2=0
③求证:(2a-b-c/a^2-ab-ac+bc)+(2b-c-a/b^2-bc-ab+ac)+(2c-a-b/c^2-ac-bc+ab)=0
证:左边=(2a-b-c)/(a-c)(a-b)+(2b-c-a)/(b-c)(b-a)+(2c-a-b)/(c-a)(c-b)
=(2a-b-c)/ (a-c)(a-b) -(2b-c-a)/ (b-c)(a-b)+(2c-a-b)/ (a-c)(b-c)
=[(2a-b-c)(b-c)-(2b-c-a)(a-c)+(2c-a-b)(a-b)] / (a-b)(b-c)(a-c)
=0 / (a-b)(b-c)(a-c)=0=右边
④设1/(x-y)=a,1/(y-z)=b,1/(z-x)=c,
1/(x-y)2+1/(y-z)2+1/(z-x)2=a2+b2+c2
[1/(x-y)+1/(y-z)+1/(z-x)]2=(a+b+c)2=a2+b2+c2+2ab+2bc+2ac
证明2ab+2bc+2ac等于0即可.
2ab+2bc+2ac=2/(x-y)(y-z)+2/(y-z)(z-x)+2/(x-y)(z-x)
=2(z-x+x-y+y-z)/(z-x)(x-y)(y-z)=0/(z-x)(x-y)(y-z)=0
故 左边=右边
⑤证明:左边= -a^2/(a-b)(c-a)-b^2/(b-c)(a-b)-c^2/(c-a)(b-c)
=[a^2*(c-b)+b^2*(a-c)+c^2(b-a)]/[(a-b)(b-c)(c-a)]
=[(a^2*c-a^2*b+b^2*a-b^2*c+c^2*(b-a)]/[(a-b)(b-c)(c-a)]
=[c(a-b)(a+b)-ab(a-b)-c^2*(a-b)]/[(a-b)(b-c)(c-a)]
=[(a-b)(ca+cb-ab-c^2)]/[(a-b)(b-c)(c-a)]
=[(a-b)(c(a-c)+b(c-a)]/[(a-b)(b-c)(c-a)]
=[(a-b)(c-a)(b-c)]/[(a-b)(b-c)(c-a)]
=1