几何好的来!如图,在△ABC中,∠C=90°,∠B=45°,D为AB边的中点,点E、F分别在AC、BC上,且DE⊥DF.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 21:12:11
几何好的来!
如图,在△ABC中,∠C=90°,∠B=45°,D为AB边的中点,点E、F分别在AC、BC上,且DE⊥DF.
求证:(1)CE=BF (2)BF²+AE²=EF²
如图,在△ABC中,∠C=90°,∠B=45°,D为AB边的中点,点E、F分别在AC、BC上,且DE⊥DF.
求证:(1)CE=BF (2)BF²+AE²=EF²
证明:连接CD
AC=AB,D为中点
CD⊥AB
DE⊥DF
∠EDC+∠CDF=90°
∠BDF+∠CDF=90°
∠EDC=∠BDF
CD平分∠ACB
∠ACD=∠BCD=45°
在△CED,△BFD中
∠EDC=∠BDF
∠ACD=∠B
CD=BD
△CED≌△BFD(AAS)
CE=BF
(2)BF=CE
BF+CF=CE+AE
CF=AE
BF2+AE²=CE²+AE²=EF²
AC=AB,D为中点
CD⊥AB
DE⊥DF
∠EDC+∠CDF=90°
∠BDF+∠CDF=90°
∠EDC=∠BDF
CD平分∠ACB
∠ACD=∠BCD=45°
在△CED,△BFD中
∠EDC=∠BDF
∠ACD=∠B
CD=BD
△CED≌△BFD(AAS)
CE=BF
(2)BF=CE
BF+CF=CE+AE
CF=AE
BF2+AE²=CE²+AE²=EF²
几何好的来!如图,在△ABC中,∠C=90°,∠B=45°,D为AB边的中点,点E、F分别在AC、BC上,且DE⊥DF.
如图,在Rt△ABC中,∠C=90°.D是AB的中点,E,F分别为边BC和边AC上,且DE⊥DF.求证:以AE,EF,B
如图,△ABC中,∠C=90°,∠B=45°,D为AB中点,E,F分别在AC、BC上,且DE⊥DF.求证:AE^2+BF
如图 RT△ABC中 ∠C=90° D是AB中点 E F分别在AC和BC上 且DE⊥DF 求证 以AE EF BF的长为
已知:如图,△ABC中,∠C=90°,D为AB的中点,E、F分别在AC、BC上,且DE⊥DF.求证:AE2+BF2=EF
如图,在Rt△ABC中,∠c=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF^2=AE^2+
如图,在Rt△ABC中,∠C=90°,D是AB的中点,E、F分别在AC和BC上,且DE⊥DF.求证:EF方=AE方+BF
如图,在RT△ABC中,∠C=90°,D是AB的中点,E,F分别在AC和BC上,且DE⊥DF,求证:EF平方=AE平方+
△ABC中,∠A=90°,AB=AC,D为BC中点,E、F分别在AC、AB上,且DE⊥DF,试判断DE、DF的数量关系,
如图,在△ABC中,D是AB的中点,E,F分别是AC,BC上的点,且DE⊥DF,求证:AE+BF>EF.
如图,已知,点d是三角形ABC的边bc上的中点,DE⊥AC,DF⊥AB垂足分别为点E、F且BF=AC.求证⑴∠B=∠C,
已知:如图,在等腰直角三角形ABC中.∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.,